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ABSTRACT

This report considers the problem of controlling both the

attitudc and angular velocities of an axially symmetric spacecraft

while minimizing the maneuver duration. In particular, various com-

binations of thrust limited reaction jets are employed to properly

orient a spinning space body with respect to specified reference di-

rections starting from known initial conditions of the vehicleva

attitude and angular rates. Five control jet configurations are

considered: two gimballed systems where torques can be applied about,

1) any axis in a plane normal to the axis of symmetry, 2) two per-

pendicular non-rotating axis in a plane normal to the axis of symme-

try; and three body-fixed configurations where the thruaters are

immobile relative to the vehicle and can provide both positive and

negative or only positive (negative) control torques about one or both~i

of the vehicle's transverse axis. The control systems are realizable

from a hardware standpoint and the corresponding optimal controls can

be classified as: 1) a continuous function of time, 2) bang-bong,

3) on-off, and 4) a combination of (1 and 2) or (2 and 3)- In add-

ition to specifying five controller configurations the following

assumptions are made: 1) the only external torques are the control

torques, 2) the vehicle has a single axis of symmetry and is spinning

at a constant rate about this axis, 3) motion of the vehicle's axis of

symmetry is limitqd to small angular excursions about a nominal
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direction, and 4) the maneuvers terminate with zero angular rates

about the transverse axis.

The optimal control problem is furmulated in terms of four stace

variables: two normalized angular velocities and two normalized,

inertial components of angular momentum (or two dimensionless spin axis

position angles). The maximum principle is used to provide a necessary

(and in certain cases, a sufficient) condition for time-optimality. In

taking this approach four costate variables are introcuced. Thus the

optimization problem is one of solving an equivalent two point boundary

value problem. Exact optimal controls in terms of the initial costate

and minimum final time are then determined for certain classes of state

boundary conditions. In those cases where direct solutions are not

available, a Newton-type iterative procedure is employed to solve the

two point boundary value problem. In all cases the optimal control is

ultimately expressed in terms of from one to four dimensionless

physical parameters which include: vehicle geometry, spin rate, thrust

magnitude, moment arms, initial state, and desired final state. In

this manner families of solutions are generated with a modest expendi-

ture of computation time.

In cases where the total angular momentum vector and the spin

axis are aligned at the initiation and termination of control three

modes of operation which characterize optimal steering are defined.

These include the two limiting cases where, for example, the control

magnitude is very large (small) compared to the angular momentum due

to spin. The third mode is characterized by the transition region
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between the "short" and ".long" time solutions. In the latter case,

the maneuver duration may be from one to ten revolutions of the space-

craft about its axis of symmetry. Finally, for certain values of the

dimensionless physical parameters the response of the non-linear system

is typified by that of the linear plant. Hence the results of this

report are useful in determining the minimum time required for

arbitrarily large reorientations of a vehicle's spin axis.
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CHAPTER 1

INTRODUCTION

1.1 The Problem Description

The primary objective of this research was.to investigate the

problem of minimum time attitude control of axially symmetric spin-

ning spacecraft where control is provided by various combinations of

thrust limited reaction jets or small rockets. Major emphasis of the

study was the development of techniques for the analysis and design

of flight control systems where errors in the spacecraftfs attitude

and angular rates must be reduced in minimum time. Specifically, both

analytic and numerical procedures were employed for synthesizing opti-

mal control systems used for properly orienting a spinning spacecraft

with respect to specified reference directions starting from known

initial condis.ions of the vehicle's attitude and transverse angular

rates.

In the literature one finds that most papers on the attitude

control of spinning spacecraft can be grouped int3 the following dis-

tinct classes: (1) discussions of the vehicle's motion and stability

when some type of passive control is employed (a nutation damper),

(2) designs for multi-impulse or continuous control schemes(mini-

mizetion of a cost function is not considered), and (3) procedures

for synthesizing both open and closed loop optimal controls (the

performance criterion may be fuel, time, or po;jer). In those papers
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which deal with the problem of controlling a spinning vehicle in minim-

mum time the major emphasis has been placed on synthesizing control

laws for various idealized analytic models. Thus, it does not appear

that a general theory for the time-optimal control of spinning

spacecraft has been developed. An ideal general theory would: (1)

illuminate the basic structure of the problem so that it can provide a

foundation upon which to base the analysis and design of flight control

systems, (2) provide analytic and computational procedures for synthe-

sizing open or closed loop controls, and (3) form a foundation for

synthesizing new procedures which would be useful in solving more com-

plex problems. In the research discussed in this report emphasis has

been placed on Items (1) and (2).

1.2 Discussion of the Problem

It is well known that a rigid axially symmetric body which is

spinning about a principal axis of maximum or minimum moment of

inertia maintains a stable orientation relative to an inertial frame

when the vehicle's total angular momentum vector, the angular velocity

vector, and tie spin axis all coincide. lowever, for most mission

requirements the inherent stability of a spinning vehicle must be

augmented by either an active or passive control system. The type of

control device employed depends, of course, on a variety of factors

which includes the error that can be tolerated in the terminal con-

ditions and the time over which a maneuver must be carried out. For

example, passive dampers that dissipate energy can reduce unwanted

transverse angular rates but do not, in gener3l, provide control over
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both the vehicle's attitude and nutation rate. Therefore, due to the

action of disturbance torques and the resulting motion of the desired

spin axis orientation or the requirement for exact reorientations of

the vehicle's spin axis, it is necessary to provide an active control

system. In summary, one can describe the basic functions of an active

system as those of maneuvering the vehicle in a prescribed manner and

stabilizing it (reducing the transverse angular rates to zero) when

-a desired orientation has been acquired.

Over the past years various devices have been employed for con-

trL ing the attitude of space vehicles. For example, an active con-

trol sys.tem designed for station keeping may employ magnetic torquing;

however, when rapid =c rections must be made in the vehicle's attitude,

one would normally design the control system to include reaction jets

or small rockets. Mass expulsion systems appear to be the most versa-

tile method of altering the spin-axis direction. Such a system is

self-contained and is not affected by the environment of the satellite.

In addition, the control magnitudes are normally larger than those

provided by other systems of comparable weight. Changes in the vehi-

cle's attitude or transverse angular rates can be accomplished by

applying either continuous or pulsed torques norwal to the spin axis.

Controlling the system in this manner can introduce significant trans-

verse angular rates in the vehicle . ich in turn causes the spin axis

to nutate following a correction. Some authors have assumed that the

magnitude of the controlling torques is so small that the spin axis

remains nearly aligned with the total .ngulnr momcntum vector through-

out the interval over which control is applied. In cases where the
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important design criterion is minimum time, the control mognitude must

be larger than that considered in the previous example; therefore, the

transverse angular velocity and spin axis attitude must be controllec

simultaneously. Thus, the time-optimal control problem becomes one of

choosing from among those admissible controls which cause a specified

change in state for a particular system that steering function which

effects the reorientation in the least time.

In the present study we are concerned with the problem of con-

trolling both the attitude and the transverse angular rates of an

axially symmetric spacecraft by means of reaction jets. For the pur-

pose of this analysis it is assumed that the system can be represented

mathematically as a rigid body with a single axis of symmetry. Also,

the vehicle is asstaed to be spinning at a constant rate about its

axis of symmetry and, in addition, may be nutating as a result of

initial non-zero angular rates about the transverse axis. The third

and final restrictive assumption is that motion of the vehicle's axis

of symmetry is limited to small angular excursions about a nominal

dirention. This assumption is reasonable if the attitude and angular

rate errors which must be corrected during an acquisition maneuver *re

small or if subsequent reorientations of the spin axis are through

angles of approximately fifteen degrees or less.

The problem specifications must also include a statement as to

the type of control device employed. For the problcm considexed in

this report it is assumed that control is provided by various combi-

nations of thrust "limited reaction jets or small rockets; the con-

troller config3,rations considered are shov, in Figure 1.I. Case (A)
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corresponds to a single gimballed jet which can be oriented arbi-

trarily in a plane normal to the vehicle's axis of symmetry. In

Case (B) control is provided by four body fixed jets which produce con-

trol torques about the x and y axis. In Case (C) and (D) control is

provided by two fixed jets and one fixed jet respectively. Here both

positive and negative torques are produced about the y axis when con-

trol is provided by two jets-Case (C). In contrast, only a positive

(negative) control moment is available about the y axis when control

is provided by a single jet-Case (D). In Case (E) the basic spacecraft

consists of two separate sections which are connected at the axis of

symmetry by a frictionless bearing; the aft section, which houses the

attitude sensors and four body fixed reaction jets, has a zero spin

rate about the vehicle's axis of symmetry.

y y y

I

//

(A) Gimballed Jet (B) lL-Jets (C) 2-Jets

y y

I z
x x

(D) 1-Jet (E) Non-Spinning Platform

Figure 1.1 Coijt °,l Jet Cot FiguraLions
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1.3 Summary of Related Work

In the literature we find that, in general, four basic techniques

have been considered for synthesizing minimum time controls. The fiist

is to form a functional relation between the optimal control and the

state. Here a necessary condition (e.g., the maximum principle) is

used to determine the qualitative structure of the optimal steering

functions; the exact control is then specified by the instantaneous

values of the state variables. This procedure is commonly referred to

as closed loop control. The major advantage offered by this method is

that it allows continuous feedback control since the optimal control is

knonm at each instant. However there are, in general, no known synthe-

sis techniques for determining a functional relation between the opti-

mal control and the state for both higher order linear and non-linear

systems when the cost functional is time. For lower order systems it

is possible to relate the position of the state point X to the switch.

ing surface and thus determine the sign of the control function u(X).

This technique has beer applied by Athans, et al. I1] and Gruber,

et al. [21 to the problem of minimum time angular velocity control of

a spinning axially symmetric spacecraft.

A second procedure which has been considereC by various authors

also relates the control functionally to the state and is a useful

approach for feedback control systems. This method is often referred

to as quasi-optimal control. Here the desirable features of closed

loop control are retained, in addition, the computational task asso-

ciated with synthesizing true minimum timc controls is reduced. This

is accomplished by approximating the true mwinimum time control by a
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nearly time-optimal control. As could be expected, the difficulty of

the synthesis problem depends upon the error that can be tolerated

between the exact optimal control qnd the approximation. Such a pro-

cedure has been applied to a satellite attitude control problem by

Friedland [3].

A third commonly used method for computing the minimum time con-

trol corresponding to specific boundary conditions is the iterative or

successive approximation technique. In contrast to feedback control

the iterative methods normally give the entire control law rather than

an instantaneous value of u. Thus one could observe the state at dis-

crete times and solve a number of two point boundary value problems in

order to determine the optimal control. In general, two types of

iterative procedures have been investigated in the literature. First,

those schemes which systematically adjust the control (steepest de-

scent, second variation, etc.) until specified boundary conditions are

satisfied; and second, those methods which rely on a trial and erroi

process. An extended form of steepest descent was employed by Hales

and Flugge-Lotz (41 to determine minimum fuel controls for a rigid

body in orbit. The latter was used by Bass (51 in an attempt to solve

the non-linear, minimum time, control problem. A drawback of iter-

ative schemes is the length of time required to compute the optimal

.ontrol. In most cases the computation time has made it impossible to

employ iterative techniques to generate optimal controls in feedback

systems.

Finally, there are those solutions obtained from an intuitive

analysis of the attitude control problem. In many cases the model
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representing the physical system has been simplified (e.g., reduced to

a lower order system) or restrictions have been plcced on thc control

system (e.-., impulsive thrusting, very low thrt it, etc.) thus allowing

one to solve the optimal control problem by inspection for certain

initial and final values of the state variables. Studnev [6] investig-

ated the problem of controlling both the spin axis attitude and ang-

ular rates for a number of "mixed" cost functions when the control is

impulsive. Poralli and Connolly 17] used a similiar approach to obtain

minimum fuel impulsive controls for a fourth order linear model of a

spinning spacecraft.

In past studies of the attitude control probler where one or

more of the aforementioned techniques are applied it is often the case

that relatively little insight is provided as to the performance capa-

bilities of physically realizable control systems. These analysis have

not, in general, considered the inter-relation between the actual phy-

sical system, the type of controllers employed, and tie initial acquis-

ition or subsequent reorientation maneuver which must be carried out.

1.4 Summar of the Present Work

The following are the principal contributions cf this study:

1. As a means of illuminating the structure of the time-optimal con-

trol problem this study provides answers to the following ques-

tions. For a given vehicle configuration what is the minimum time

required to carry out a specified change in attitude? How do the

system parameters affect the minimum reorientaticn time? What are

the characteristics of the optimol c-tntrol in ter-.s of the systen
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paremeteis? For a given rate of propellent expenditure how do

various control jet configurations compare with one another in

terms if the minimum time required to reorient the spin axis

through a given angle? Csn one find analytic solutions to the

optimal control problem for certain control jet configurations?

In view of these objectives exact time-opt.rnal controls have

been determined for a wide range of vehicle configurations and spin

axis attitude errors when steering is provided by those control

systems depicted in Figure 1.1. It is of interest to note that

Controllers (D) and (E) are not usually considered in the litera-

ture. In addition, it is found that Control System (D) with un-

limited control power cannot, for the class of bcandary conditions

considered, effect a given transition In the state point over an

arbitrarily small interval of time, and that (E) is not normal.

Moreover, since the jet configurations shown in Figure 1.1 are

physically realizable the results of this study should be useful in

the design of active control systems. For example, a comparison of

performance capabilities shows that certain jet configurations are

"better" then others; and, in addition, that savings in time and

fuel can be obtained through an appropriate sdlection of both the

vehicle's geometry and the thruster configuratior.

2. The maximum principle approach to the optimal control problem

results in the rcquirement for solving a two poi-t boundary value

problem. For most higher order systems it is not, in general,

possible to solve directly for the optimnl contrzl in terms of the

error between the actual and desired state point. For lower order
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systems (control of a vehicle's angular rates) Athans, et al. [l

were able to relate the state point to the switching lines and

thus otained the optimal control in feedback form. In this study

synthesis procedures are employed which involve both closed form

solutions and a combination of closed form with a numerical iter-

ative technique. In those cases where it was not possible to

obtain the optimal control directly an iterative scheme similar to

Newton's method was used to solve the two point boundary value

problem. This algorithm was developed in view of the peculiar

characteristics of the attitude control problem (the system is non-

dissipativ-, optimal control for Jet Configuration (D) contains

coast periods, and optimal steering for System (E) may be non-

unique) and is described in Appendix A. Several unique features

of this numerical method are:

a) Ih certain cases inequality constraints are placed on the mag-

nitude of several components of the initial adjoint vector and

on the magnitudes of the computed corrections to the adjoints

and final time.

b) Z systematic method for crossing switching surfaces is proposed

which takes advantage of the apparent "smcothing" (a reduction

in the magnitude of the discontinuity of the support hyper-

planes at the corners) of the isochrones as the dimension of

the control vector increases.

The advantage of using both analytic and numerical schemes in

conjunction with a normalized staLe representation of the system is

that families of solutions are generated and ploLted as graphs with a



modest expenditure of computer time. From the graphs one can readily

determine both the optimal steering law and the minimum final time.

At this point it should be noted that optimal controls are only giver

for certain classes of error signals. Therefore, the results of this

study would not, in general, be used to generate optimal controls in

feedback systems. However, under "ideal" conditions numerical proce-

dures such as the one described in this study could be employed to

synthesize "usable" steering commands.
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CHAPTER 2

PRELIMINARY DEVELOPMENTS

In this chapter the coordinate frames are defined; the equations

of motion required in subsequent chapters are developed; and some con-

trol theory notions pertinent to the attitude control problem are

presented.

2.1 Coordinate Systems

There are a number of factors that one must consider before

choosing a particular coordinate geometry-among these are: (1) the

effort required to determine either closed form or numerical solutions

to the resulting system of equations and to easily obtain a physical

interpretation of the results, and (2) mechanization requirements that

constrain the manner in which various control sources must be repre-

sented. The fundamental coordinate systems required are shown in the

following two figures.

Figure 2.1 defines the position of the vehicle relative to an

inertially stationary (X , Y11 ZI) coordinate frame where the XI axis

forms a fixed angle with respect to the vernal equinox and the ZI axis

is normal to the orbit plane. It will be useful in the following dis-

cussions to define (XR, ,R' ZR), hereafter referred to as Coordinate

System I, relative to the (X, YV Z 1) reference axis. This definition

is made in terms of the angles e', q', and *' as shown ir, Figure 2.1.

Two additional reference fracs arc defined in relation to
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Coordinate System I. In the analysis which follows it is assumed that

the motion of the spin axis is limited to small angular excursions

about the ZR axis - a nominal direction. Thus, for this type of motion

the position of the vehicle's spin axis with respect to Coordinate

System I can be conveniently defined through the use of Euler angles;

this would not be the case for arbitrarily large values of attitude

ZI

R Reference, Place

Spin Axis -ec\

XI

Orbit Plane

XR

Figure 2.1. Definition of the (XR,YRZR) Coordina:e System

error since the rate of change of one of the angles :ill become un-

bounded for certain attitudes. The orientation of tI'. body fixed

principal axis (x, y, z), hereafter referred to as Cc¢rdinate System

III, is specified by the Euler angles ,, r, and z- as shown in

Figure 2.2. The order of rotation is a precession o' the line of
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nodes about Z, a tilt 0 of the spin axis about the line of nodes,

and a rotation * about the z axis. The angles a and p that the spin

axis makes with respect to Coordinate System I represents the body

attitude error.

The (xt, yt, zt) coordinate frame, hereafter referred to as Coor- I
dinate System I, is also defined in Figure 2.2. This system is the

result of "de-spinning" the body-fixed (x, y, z) reference frame.

Thus, Coordinate System II has a zero spin rate with respect to the z

axis.

ZR

KRR

Figure 2.2. 
Definition 

of the (x,yz) 
and (xly,z'Coordinate 

Systems

he fundamental 
coordinate 

transformation 
between Reference 

Frxrs II
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and III can be written as

e cos 8 -sin 0 e
ey r sin Cos 0 (2.1)

eJ 0 0 1 e (

where

z 0

2.2 Equations of Motion

It is well known that the angular motion of a rigid body may be

described by the Euler equations:

I X 6Xt) Wy(t)Wz(t)(I -Iz ) = MX(t) (2.2)

I (-W(OW (t)(I-1) = (t) (2.3)
Y Y x (t)x

where the dot denotes derivative with respect to time.1  Also, in the

analysis which follows the moments of inertia are assumed to be con-

stant throughout the interval over which control is applied. In

general, a vehicle's mass changes less than 5% due to the expenditure

of propellant during a nominal reorientation maneuver; therefore, this

is not an unreasonable assumption.2  If the z axis is the axis of

symmetry then I =1 =I. We can now rewrite the Euler equations asx y

follows:

x(t) = (l- )i(t)W (t)+ X (2.5)

A derivation of the Euler equations can be found in Goldstein (8).
2 Typical fuel requirements are presented in [9).



16

I~ 1(t)
(t) - ( t) 0+ y (2.6)

L 2z(t) o (2.7)

The last of these equations results in w.(t).w,=constant since external

moments about the z-axis are assumed absent.

For Controller Configurations (A) and (E) it is desirable to

write the transverse angular velocities with respect to Coordinate

System II. Applying the transformation given by (2.1) to equations

(2.5) and (2.6) we find

I N)(t) - (t)
(t) j wy 0 Cossin(2.8)

e (t) ,(t) + sin a+ zcos (2.9)

i where

W N,(t) w wx(t) cos 0-wy(t)sin B, (2.10)

W yt(t) w (t) sin +w(t)cos B • (2.11)

Using the Euler angle notation given in Figure 2.2 we can derive

the following transformation that relates. wx' w,' and w' to the time

rate of change of the Euler angles:

wx,(t) = sin e sin, + cos (2.12)

w (t)=- sin e cos, - sin (2.13)

, z Cos 0 + (2.14)

For small angular excursions about the ZR axis sin 0 and cos e may be

represented by the first order terms of their respective power series.

2
Thus, sin e = e, cos e = I when terms of O(0 ) are neglected. In

addition, Wz = 0 since Coordinate System II does noc rotate about the
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z' axis. Equation (2.14) is now integrated with the following result

4(t) = -*(t)+c. (2.15)

As will be shown in the following paragraphs this relation allows us to

represent the spin axis attitude in terms of rotations about the x' and

y' axis.

In the absence of external torques about the z axis the spin rate

remains constant~and therefore the spin axis attitude can be con-

veniently represented by the ) components of the angular momentum

vector I w e as shown in Figure 2.3.

ZR

I W

z s

eL

I Y Y

Lx
I w e
z s

XR

Figure 2.3. Definition of L : and

Define the X and YR components of I w e by:
Ls .Rz si(

1w sin qp (2.16)

( - W cos P. (2.17)

Differentiating the above equations with respect to time and after com-

bining the results with Equations (2.12) through [2.15) we find:
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= _ W Y,(t) (2.18)
(2.19)

Thus Li and are directly related to the ihtegral of the rotation

rates about y' and x' axis respectively. The equations of motion for a

spinning vehicle can now be written in vector form as follows:

W, 0 0 0 '(t) o 0

,(t) W ,(t) 0

_d 0 0 0+ M(2.20)
dt s(t) 0 w 0 0 ,L(t) 0 0 M,(t)

L,0(t) "w 0 0 0 'or(t) 0 0

The control moments which appear in (2.20) are defined by:

M ,(t) -M(t)cos p-M y(t)sin p (2.21)

M, (t) M Mx(t)sin O+My(t)co, p (2.22)

As will be shown, Equation (2.20) is a useful representation of the

system when control is provided by Thruster Configuration(A). In

addition, integration of (2.20), providing Mx(t) and 11 (t) are known,

gives the instantaneous position of the spin axis which is required if

minimum time trajectories are to be plotted in the (XR-YR ) plane.

For the remaining controller configurations, Cases (B) through

(E), it is convenient to describe the spin axis attitude in terms of

the total angular momentum of the system. This approach is desirable

from a computational standpoint since the equations representing angu-

lar velocity are uncoupled from those representing angular momentum.

The spin axis attitude can be readily determined if one expresses the
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system& total angular momentum with respect to Coordinate System I.

Components of the total angular momentum about the X Rand YRaxis are

the result of two contributions: a projection of the angular momentuai
vector I we onto the (-Y)plane and the XRYR components of the

transverse angular momentum Iw xand Iw . Thus, the 11 an YR cotopo.-
xy

nents of angular momentum, when the spin axis is restricted to smll

angular excursions about the Z R axis, are given by the following

expressions:

LX(t) Iw (t) + I1w 0 sin q) (2.23)

LY(t) =W ryw(t) - I.W5 0 Cos (P(2.24)

A geometric interpretation of Lx and Ly is presented in Figure 2.4e.
X

zsz

R

LL

XR
Figure 2.4. Definition of L Xand L

Differentiating (2.23) and (2.241) with respect to time and combining

the result with (2.8) and (2.9) we find:

fX(t) = MX,(t) (2.25)

Y()=My ()2.6
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When control is provided by Thruster Configurations (B) through

(D), it is convenient to represent the spin axis attitude by Equations

(2.25) and (2.26) and to use the Euler equations, (2.5) and (2.6), to

describe the transverse angular velocities with respect to the body

fixed reference frame. Thus, the controlled equation becomes:

( 0 7W o W(t) 0

W(t) 0 0 0 W(t) .0 M.8t o o .XJI oyt
d Y + (2.27)
dt L(t) 0 0 0 0 LX(t) cos -sina M (t)

y

L(t) 0 0 0 0 L (t) sin cos

The controller depicted in Figure I.I.E employs a non-spinning

platform which is mounted to the vehicle by a frictionless bearing;

therefore, the thrusters are stationary with respect to Coordinate

System II. For this control system it is convenient to use Equations

(2.25) and (2.26) to describe the spin axis attitude and the trans-

formed Euler equations* (2.8) and (2.9), to represent the vehicle's

transverse angular velocities. Hence, the controlled equation is:

W i(t) 0 - 0 0 W,(t) - 0-z- W a 0 ,M(t) o1w

0,(t) "0 0 0 W,(t) 0 - x M'(t)
d y y

dt + (2.28)
Sx(t) L 0 0 X(t) 1 0 M,(t)

L()0 0 0 Y(t) 0 1

In order to complete the mathematical formulation of the problem

we must specify the control vector which appears in Equations (2.20),
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(2.27), and (2-28) in accordance with the physical limitations of each

control jet configuraticn. This process is carried out in Chapters 3

through 5 where the problem of synthesizing optimal control laws for

reach of the five jet configurations is investigated in detail. Speci-

fically, the mathematical problem to be considered is one of selecting

a control vector M(t)=M(t)e +M(t)e from among the admissible con-

trols which will take each of the fourth order systems from a specifiea

initial state to a desired terminal state in less time than any other

admissible control.

2.3 Some Pertinent Control Theory Concepts

The purpose of this section is to formally define some control

theory notions which are pertinent to the attitude control problem

(controllability, normality, etc.).

Definition 2.1 (The Optimal Control Problem)

Let U([totf];n) be the input space of a given dynamical system.

Let (4(t),R(t),t) a continuous function from Rn x Rq x [totf] into

R and define

It
J(o,to;u(t)) = (X(t),u(t)t)dt (2.29)

to
to be a performance functional mapping Rn x RI x U into Rio Then the

optimal control problem is defined as: find the control sequence it),

t[tottf], which drives the state from X at time t to the desired

final state Xf at time tf (tf not necessarily given) such that

J(X,,to,u) is minimized (maximized).

In this study the vector x(t) represents the vehicle's attitude
angles and rotation rates and must satisfy a linear differential
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equation of the following form

_(t) A (t) + B(Oit) (2.30)

where o, are given and the allowable control sets corresponding

to Jet Configurations (A) thru (E) are:

Scheme A

(t)cnA A = u(t): /ut)+u 2 (t) < 1) (2.31)t) nk A t x y

Scheme B "

%(t)er% =( !L(t): Iux(t)IS" y(t)<_ 1) (2.32) $
i

Scheme C

" (t) nc nC a( (t): Uxt W O, UyW I)} (2.33)

Scheme D

%(t)En' rn.( u(t): ux(t) = O, <uy(t)<l] (2.34)

Scheme E

4(t)Cn. n.= u.(t): jux,()<_ Jyo~)<.}(.

The controls uA(t) through !E(t) are defined in terms of both the maxi-

mum thrust produced by the gas jets and the moment arms in Sections

3-.1, 4.1, and 5.1. Note that the bounds on the components of the con-

trol vectors were determined under the assumption that the maximum rate

of fuel flow is the same in each of the five control schemes. This

appears to be a fair way of comparing perfornance capabilities.

Definition 2.2 (Complete Controllability)

Assume that in the definition of control sets p. thru nE,Iiu(t)l
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is unbounded. Then System (2,30) is said to be comptetety coftiollAble

on a finite interval [t.,tf] if for every state X clu at tie- t and,

any desired final state at tf eRn there exists a controlt) -!..

defnea on (t,tf such that A(t f- .

Under certain conditions it may be required to carry out a given

change in the state point when the interval ftOt I is arbitrarily

small. This naturally leads to the question as to whether a system can

be driven frow some initial state X at t to a desired final state.

at ti when [to,ti] is a subinterval of [totf].

Definition 2.3 (Total Controllability)

System1(2.30) is said to be totally controllable on an interval

[t0 tf] if it is completely controllable on every subinterval of

If 0(t,t0) is the transition matrix for (2.30) and 0(tto)=

iI(t'to)B(t ) then the necessary and sufficient conditions for complete

and total controllability can be summarized as follows:

Theorem 2.1

System (2.30) is completely controllable on an interval [totf]

if and only if the rows of 0(tt O) are linearly independent functions
[to f]ofteon Et)

Theorem 2.2

System (2.30) is totally controllable on the interval [totf] if

and only if the rows of 0(t,t o) are linearly independent functivns of t

on every subinterval of ft0 tfl.

Note that Theorems (2.1) and (2.2) only provide necessary con-

ditions for complete and total controllability when restrictions are

- "
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.placed on the admissible control. From-the necessary and sufficient

conditions for complete controllability we find:

1. for System (2.20)

I w t I w t
. Cos sin

Col : : (2.36)

0

0 1

-2. For System (2.27)

4) 4~ Jets I cos(Yw t) . l sin(7w t)

0(t) sin( t) cos(cAst) (2.37),)twt) 1I

cos -sin

sine cos

b) 2 -Jets and I- Jet

y sin (ywst)

O(t)= L cos (ywt) (2.38)

-sin

Cos o3

3. *For System (2.28)
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cog W .sin(. W)

sin W Cos (2.39),)- 8I t Y s

1 0

L 0
Note that in the above equations we have assumed that to = 0. Thus, inA

the three sys.tems considered the control can influence each component

of the state vector for all te[to,tf). Hence, in the absence of re-

strictions which may be placed on the admissible control sets, the

systems are both completely and totally controllable. However, we note

that Control System (D) can be defined as: 0 < Uy <by, B(t) A 0;

-b < u < 0, B(t) = O. If b is unbounded then nD becomes the line
yy y

(-oic). Moreover, if u < 0 then B(t) = 0 and the system is neither

- mpletely or totally controllable.

Definition 2.4 (Maximum Region of Recoverability)

An element of R is a recoverable state in [t,t] with respect to
n

Xf if there exists an admissible control which will drive the system

from this state at t to state X at time tb The maximum region of
o -f

recoverability with respect to Xf in [t,t] is thp set of all recover-

able states in [t,t ] with respect to Xf. The definition of a maximum

region of reachability with respect to X follows directly.
-0

From Theorem 2.1 we found that the concept of controllability iu

basically concerned with the type of coupling that exists between the

input and state of a system. However, when the input vector is con-

strained to belong to a compact, convex subset (Wl) of its vector space
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the question of recoverable (reachable)states becomes important. That

is, if we wish to synthesize optimal controls for a wide range of

boundary conditions (flooding) then it is desirable to know a priori if

all states which conform to the small angle approximation are recover-

able (reachable) when control is provided by the thruster configura-

ations depicted in Figure 1.1.

Following the work of LeMay (10) and others we find that when

certain conditions are satisfied, namely:

1. System (2.30) is completely controllable for a general time t
0

2. The matrices A and B(t) are piecewise continuous in t, t < t < .
0

3. The input is admissible (u(t) is measurable and u_(t)cp).

then a necessary and sufficient condition for the entire state space to

be recoverable is given by the following theorem.

Theorem 2.3

The entire state space is recoverable in (toO,) if and only if
0

f 'll($( to~ t)Ball I.1 t = L 0, IL

tf'I0t 0,tBt) Iall r, n (2.40)
0

where for convenience the vector no~rm j Iis defined by
ni I I 3

i' Hill-- E xi

It is readily shown that the necessary and sufficient condition

provided by Theorem (2-) is satisfied by Systems (2.20), (2.27), and

(2,2F); therefore, all states which conform to the small angle re-

striction are recoverable wE'n control is provided by the five jet

31,Salle [11] defines systems which satisfy this con-'ition as "asympto-
tically plopcer".
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configurations depicted in Figure I.I. However, in the flooding proc-

ess we are also concerned with reachable sets since in most cases

optimal trajectories are computed between a fixed initial state (the

origin) and a selected number of different terminal states. The prob-

lem was formulated in this manner since it is somewhat easier to show

symmetry properties of the optimal control when the initial state lies

at the origin. The control problem considered here can be easily

transformed into regulator form since the real parts of the eigenvalues

for Systems (2.20), (2.27), and (2.28) are zero; therefore, if the

entire state space is recoverable with respect to the origin then it is

also r- chable with respect to the origin.

Comment 2.1 (Some Properties of the Maximum Reachable Set)

Providing the assumptions listed in (10] are satisfied (the sys-

tem is totally controllable, the control set is compact and convex,

etc.) one can show that the maximum recoverable set (in this case also

the maximum reachable set) is compact and convex and is symmetric if f2

is symmetric. Furthermore, for t > to, the recoverable set has dimen-

sion n, grows continuously and strictly monotonically with t in the

interval t < t < oo, and contains the origin as an interior point.
O

Definition 2.5 (Minimum Time Isochrone)

The minimum time isochrone is defined by the relation

x(t) = x(t): t (Xe) = t; t > to (2.41)

Since the boundary of the maximum recoverable set in (to,tf) is the

minimum time isochrone and in view of Consnent (?.) we find that the

surfaces defined by tf = constant have certas.n sym,'"try properties

when control is provided by Jet Configurations (A), (B), (C), and (E).
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However, control set p.D is not symmetric and, in addition, does not

contain the origin as an interior point. Therefore, the maximum re-

coverable (reachable) sets may not grow continuously in all directions

with time. Consequently, System (2.27) may not be controllable over an

arbitrarily small interval of time even if unlimited power is available

to the control system.

2.4 The Maximum Principle

The Maximum Principle of Pontryagin is one of the most useful

theorems available for the solution of optimal control problems. The

proof of the theorem is discussed in detail in [12] and (13]. The

necessary condition for optimality provided by this principle, as it

applies to the attitude control problem, is stated here without proof.

Theorem 2.4

t(x,u~t) be continuous on R x x n. Define a continuous function

from R x Rq x Rn x R, into R as the Hamiltonian by

H(X(t),u(t),P(t),Pot) = PXt),u(t),t) + (2.42)

If U*(t), te[to ], is an optimal control sequence in U([t, ];D,)

then there necessarily exists a constant P* and ail n-vector P (t) such
0

that

f(X*(t),u (e), P"(t), P*,t) > H(X'(t), u(t), P*(t),Pt) (2.43)

u(t)

where:

I. P o0



29

2. #0

3 =t- ft¢ (X((t), Pe(t), e, t)

H (t)H,(x*(tt)u tP )

(t 0 X ( Xf

If the plant is autonomous and t is "free" then

H(X*(t), u(t), et) = 0.
- 0

An application of the maximum principle transforms the optimal

control problem to a two point boundary value problem. To solve the

latter we must determine the optimal control (i.e., solve for both the

n-vector PW(t) and the final time t*) that takes the system from a

specified initial state to a desired final state. For the attitude

control problem considered in this study we have assumed that the ini-

tial and final states are known; thus, the problem becomes one of

selecting the ordered pair (P*(to), t*) such that the state is driven

from X to Xf in minimum time.

2.5 Uniqueness of the Bang-Bang Control Law

In the previous section we stated a necessary condition for the

optimal control. Perhaps the most useful result nf Theorem 2.4 is

that it serves to limit the search for u*(t) to a specific class of

controls, e.g., the class of bang-bang controls. However, even though

a control is found which satisfies the necessary condition there is

still the question as to whether the control is globally optimal. This

dilemma can be resolved when the allowable control set is of the form

- b < u. < b b 0 b >0, i 1, ?,...q, through the concept of
1-2 2- 2> 0' '
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normality.

Definition 2.6 (Normal Control System)

System (2.30) is said to be normal if for each j = 1, 2,...q the

functions 0t , . . (tt) are linearly independent on each
jhinterval of positive length (J(t,to) is the column vector of

)). This is equivalent to raying that the system is controllable

with respect to each component of u(t).

Theorem 2.5

If the linear system _(t) = A(t)X_(t) + B(t)u(t) is normal then

the time-optimal control is unique (if it exists).

For non-normal systems which are controllable the most that can

be said is that there is a bang-bang steering function that is optimal.

However, there may be other control laws which cause a specified change

in the state of the system in the same minimum time. In view of the

definition of normality we find that System (2.27) is normal when con-

trol is provided by Jet Configuration (B) thru (); therefore, the

optimal steering functious are unique and, in addition, must operate

in a bang-bang (in the case of ul(t) an "on-off") mode.
-D

Control System (2.28) is not normal sincc the elements of each

column vector of (2.39) are not linearly independent - consequently,

there may be an infinity of optimal steering functions. However, this

system is, according to LaSalle, "proper"; from Reference [II] we find

that in proper control systems optimal steering has the property that

at any given time some component of u*[t] assumes an extreme value.

The implications of normality and properness will become evident in

Chapter 5 where the optimal steering law for ([2.28] is derived. For
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Jet Configurat-on(A) we find that the optimal control is a continuous

function of time; therefore, the Hamilton-Jacobi equation provides a

sufficient condition for optimality.

2.6 The Hamilton-Jacobi Equation

In cases where the cost functional is sufficiently smooth the

Hamilton-Jacobi equation provides both necessary and sufficient con-

ditions for optimality.

Theorem 2.6

Let H(X,P,P ,u,t) be the Hamiltonian of our problem. Let !(t)

and !(t) be admissible controls such that

1. The function H(X_,P,PU,t) has a unique absolute maximum with re-

pect to all u(t)e n at u(t) = (t) for each point (X,t) in

(RxR

2. '1(t) transfers (.Zo,to) to (Xf,tf).

3. If A(t) is the trajectory corresponding to u(t) then (Y(t),t)e

Rn x R for t in [toitf]

4. There is a solution J(X,t) of the Hamilton-Jacobi equation

J(t) + H -X_,-) 0

such that

!L(t) =_g _t), F J (2(t),t)'t)

for t in [to)tf].

Then (t) is an optimal control and X (t) is optimal trajectory in R
*n



CHAPTER 3

REALIZATION OF OPTIMAL STEERING FOR THE GIMBALLED JET

In this chapter we consider the problem of controlling in an

optimal manner both the attitude and the transverse components of ang-"

ular velocity of an axially symetric spinning spacecraft when control

is provided by a reaction jet or small rocket. Specifically, a tech-

nique is proposed for synthesizing time-optimal steering commands for

the control jet configuration depicted in Figure 3.1. A summary of the

work presented in this chapter can be found in Reference [l4].

3.1 The Equations of Motion

The gimballed jet corresponds to a control moment of limited

magnitude which can be oriented arbitrarily in a plane normal to the

vehicle's axis of symmetry. Assume that the single jet delivers a

thrust t(t). The controller is gimballed; therefore, the thrust vector

• '(t) can be decomposed into two components f 1( t) and t, (t) as shown
x y

in Figure 3.1. The thrust components x',(t) and y,(t) cause torques
y

a.',(t) and a.1,(t) about the x' and y' axis respectively. If the
X y

thrust vector _f(t) is bounded in magnitude by F then

!lf(t)l: : F. (3.1)

The coponents of thrust are relatcd by

llf t)il = ,(t) + y(t) (3.2)
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hence

Define the vector UA(t) by

.(t) = F (3.4)

The components of 4(t), denoted by u ,(t) and u 1(t), are restricted
y

by

U,(t) + u , (t) 5 1. (3.5)
X y

Thus, the adr1issible control space A is a circle of unit radius in R2.

The torque components M,(t) and M (t) can now be expressed as:
X y

MX,(t) = i.u X,(t)

M ,(t) = M-u ,(t) (3.6)
y y

where

M = a.F.

Combining (3.6) with (2.20) allows us to rewrite the equations of

motion as follows:

0 (1 0 -1 o 0 ,( 1 0
^,, u X  ('1)

W ) 1 0 0 , ( ) 0 1
d Y y- +

L X(0'1 0 0 L,,T '0 0 Uy (')

L ) -10 0 0[L('V) 0 o3 J

(3.7)

where
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,,I ww, ,( ,) - I w _ (t)

<, ' )= H",,x' M ,(T)= -

I 
M

i yOV
Di IK

yt

y2

Figure 3.1 Schematic of the Ginmballed Jet

The initial and final values of the normalized state variables

were chosen to be as realistic as possible and yet be of that form

which allows us to solve directly for the optimal control (

without resorting to an iterative scheme wJhich rec'uires a digital

computer. The boundary conditions considered are:

xx

Z,(o) =1(T, =0

y (3:8)
Lx(O) : Lx(TA)o -

'(0) : 0, yT A  = -. :-iM

6x
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Solving (3.7) for 'x,(TA), Z yI(TA) LX(TA), I(TA) subject to (3.8)

and after straightfonyard mathematical manipulation we can write the

following set of governing equations which must be qatisfied by the

optimal control:
T
A

f[u ()cosT + u (T)sin- Jd- = 0 (3.9)
0
TA

fUx,(T)sinT - Uy ,(t)cos -Tdt = 0 (3.10)

0
T
A

PUx,)]d= 0 (3.11)

0
T

u , T ]d (3.12)

0

Thus, for boundary concitions as given by (3.8) the optimal control

.(u,TA) is only a function of the dimensionless parameter L.

At this point it should be noted that the control which satisfies

(3.9) through (3.12) can be used to drive the system when LX(tf) = 0

if the de-spun reference frame is pre-rotated in a counter clockwise

direction through the angle 0 where
0

a1FLx(tf)(

Also note that the control which is defined by Equation (3.8) can be

applied when the boundary conditions are specified in regulator form

(0) = I 0/m , I (TA) 0). Moreover, it is found that such casesLY z s YA

arise whenever the initial or final orientation corresponds to 0 = 0;

the problem is essentially independeat of 0 (Ihe whole problem is
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-•invariant under rotation about the ZR axis).

3.2 A Necessary Condition for Time-Optimality

F The maximum principle is used to determine necessary.conditions

for the optimal steering functions. Forming the Hamiltonian

U - pl ( )[- i,(T) + u.,(r)] + P )+ (u,'()] + P3(.) ,()

• ,w "4(r)'W' (r)"

• (3.14)
Maximization of the Hamiltonian with respect to u, (,-) and u (.)

subject to the constraints given by (3.5) occurs when b

u ,(P) + P2()

2P T (3.16) i
which implies Iu()I = 1. The variables PI(c) through P4 (T), called Ii
the adjoints, are solutions of the differential equations I

d dP21H 6) H ,H - ( - (3.17)

x y x
which may be written in vector form as ,

Pl(o) 0 -1 o 1 P (_)

d P 2(0) 1 0 -1 0 P 2(-C)I

P3t- P()(3.18)dt P (,) 0 0 0 0P(T)

Pit(-C ) 0 0 P:) . I
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The solution to this equation is

( cos -sinr 1 0 P-0

P r sin - COST 0 1 -0

0 0 (3.19)

P P(r) 0 0 1 0 ,"_

P0 0 0 1

0 0

where P1 through P4 are constants of integration. We can now rewrite

(3.19 in the kollowing equivalent form:

Pl(=) a cos(T + a2) + a3  (3.20)

P 2 () a 1sin(T + a2 ) + a4  (3.21)

P (r) a a (3.22)
3 3

P4(.)- a4  (3.23)

3.3 Normalization of the Adjoint Vector

As given by the maximum principle the necessary condition for

optimality requires that the Hamiltonian be a maximum along an optimal

trajectory. When the cost criterion is tine we find that max uH(X ,

P, P, ) is independent of IL(T) il. Therefore, the adjoint vector can

be normalized with respect to one component or a combination of

several components of a.I The objective of such a procedure is to

reduce the number of independent parameters which quantitatively

define the optimal control. In this case normalization also signific-

antly simplifies the optimal steering functions. If the normalizing,

INormalization of thQ adjoint vector is discussed in greater detail in
Appendix A.
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I Note that 0 is the only physical parameter which appears in thc first

order terms of (4.40) and (4.41) and, therefore, representc the strong-

I est influence on the location of the switching points within tie iner-

val (0. T1). If u ° is positive then oy and Y are shifted toward zero

when po is montone increasing and 0 <. o < x/4. It is readily shown

that E2 is negative when 0 <. o < ic/4; consequently, the switch point

Y is lost from the left end of the interval (0, T.) when so reaches a'

value which is slightly less than v/4 . The exact value of 0o at which

this occurs depends, of course, on both the system description and the

reorientation angle and is denoted by so' (see Figure 4.3). Thus when

o -  the optimal steering functions are no longer described quali-
0~

tatively by Switching Sequence (2-a). To determine an explicit rela-

tion between a' and the physical parameters we must consider both
0

Switching Sequence (2-a) and (2-b).

y

r , 0 XI

Figure 4.3. Definition of r'
I0
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results gives

cos 3 )2 + (P 2 2. sin-2 (.(Pl- - = at - (3.31)
3 2 n3 1

The trajectory of (3.31), plotted in the (P1-P 2 ) plane, is a circle

with center at (cosa , sin') and radius of 'a" Thus, the optimal

control can be interpreted geometrically as shown in Figure'3.2.

I"4
Na

P2

Figure 3.2 A Geometric Interpretation of
Equations (3.25) and (3.26)

Here () nd u;,( ) change with time as p traces out the circle

defined by (3.31) in a counterclockwise direction; the position of p

at -=0 is determined by a 2 . Thus, the minimum time steering functions

are defined quantitatively by the location of the center of the circle,

its radius, and the reference angle x + "2 . As will be shown presently

this interpretation of the steering functions provides significant

insight as to the exact nature of the optimal steering functions which

satisfy boundary conditions of the form given by (3o8),
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3.5 8 thesi, of the Time-Optimal Control

The optimal control which effects the change in state described

by (3.8) &ust setisfy Equations (3.9) through (3.12). Substituting

(5.29) and (3.30) into the governing equations we find that the only

taus tnot fixed by the system description are 2 and TA . Thus, (3.9)

through (3,12) can be writtu in vector form as

X (T) * ~,T (3.32)

iere

0

=
x(Tp 0

L

The mathematical -problem in now one of solving (3.32) for the

pair ( T) as functions of the. normalized angular momentum Ly. Thus,

the problem of determining a minimum time, control is equivalent to

that of cioputing an inverse to (3.32). In general, it is impossible

to determine this inverse directly. However, as will be shown, the

geometric interpretation of the optimal control, as discussed in

Section 34., provides the insight required to solve for (a, TA).

The task of eveluating (, TA) in terms of is carried out in

two ports. First, based o'n both the response characteristics of the

system when TA<I and when TA I, and in view of the boundary cond-

itions which must be satified, we can make certain observations as to

the structure of the optimal control. Then, through the geometric

interprettion of the steering functions, specific e::pressions for
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and a 3 can be judiciously chosen which quantify ux(t) and Uy,(r) to

the point where Equations (3.9) and (3.11 are satisfied. The remaining

task ts then to solve (3.10) and (3.12) simultaneously for a1 Ind TA

S3.5.1 Optimal Steering When the Final Time is Small Compared
to the Spin Rate

A control which appears to satisfy the boundary conditions when

T*CI and, in. addition, can be synthesized, at least qualitatively,

from (3.29) and (3.30) is depicted in Figure 3.3.

1 

-1

Figure 3.3 A Candidate for Optimal Steering when TA<<

Here, a large percentage of the control effort is about the x, axis;

during the first part of the interval [O,TA] a positive moment is

applied to start the spin axis moving in the proper direction; the

control jet must then apply a braking moment in order to reduce the

transverse component of angular velocity which has been excited. The

controller must lseo provide a negative moment about the y' axis since

the total angular momentum vector must be rotated through the angle e

Since the ultimate objective is to specify a and TA in terms of

L the above qualitative description must be translated into approp-

riate quantitative terms. Let us now reconsider the geometric inter-

pretation of (3.29) and (3.30). From Figure 3.2 we find that the center
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of the circle traced out by the point p 'must lie on a circle of unit

radius with center located at the origin. Thus, it appears that control

of the form depicted in Figure 3.3 will result when the center of the
circle-defined by (3.31) lies at approximately (O,-I) and when i.

slightly less than unity. This ensures that u*#(r) is negative and that
y

the magnitude of u , (T) is considerably larger than the magnitude of
x

uy (i), except when T a 7A/2. Further, let us postulate that the center

of the circle'defiued by (3.31) lies at exactly (0,-1); therefore,

(A = 31/2. If this is the case then the arc defined by p in Figure 3.2
3
u.t be sy metric about the P2 axis if u*,( ) is to satisfy (3.11);

he'ce 2  A (r-T)

In the following sections expressions are derived for o2 and

when TA - Mr. 2,94,6,..., and when TA << 1. The objective is then

to compare all resultd in an effort to determine expressions for

av,2 a which are valid for all TO < T < m At this point it should
3

be noted that the "short time" control problem (TA << 1) is discussed

further in Sections 3.5.4 and 3.7.

3.5.2 Optimal Steering When the Final Time is an Even Multiple of Ir

Confidence in the above choice for ^ is further strengthened if
3

we consider those terminal states for which TA = utr, m = 2,4,6, ...

In this case Equations (3.9) through (3.12) are satisfied when u # T)

0 and uy () = -1 for e[O, Control of this form is given by

(3.29) and (3.30) when, = 0O 0 -5 a- 2, and a3 = 372.

3.5.3 The Case When Optimal Steering is Nearly a Constant Moment

Additional insight as to both the response of the system and the

quantitative behavior of the optimal control can be gained if we
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examine the case whenu (T) is nearly a steadily applied moment about

the y' axis. Specifically, let us consider a steering function of the

following form: uy, (:)= -1 and U*, ( ) is oscillatory with a period of
y

27 and amplitude of e where e << 1. Tne optimal steering functions as

given by (3.29) and (3.30) will be of this form if a and

Thus the circle defined by (3.31) has a very small radius and center

located at approximately (0,-1). If we assum4 that the optimal control

is a constant moment plus a perturbation of 0(d,) then the optimal

steering functions become:

u,() -(~cos~+2)+ ao ~3 (-acos("9.2-Y) + O(C'l)] 3.

(T) = (a*1sin( r4" ) sin fu3)(l1 co W Oc2ci) +~ o(ft]

Substituting this control into (3.9) through (3.12) and after perform-

ing the required integration we find:

c os A . C Cos3 -- -'2 a[in 2(c.- TAT. Ao a2 + in(T.a3c+ L ~ ST

- sin 2&3] + o( A) 0 (3.35)

-a a1 Cos cs22C .sna A COS(T.~-a+ac 2- sin2 (-- sin2q~

xsin sr (,*N + o( 1)TA  o (3.36)
+1 2 a in 2a=+ sin 2 A +

a SW + A co s a' + + cos ( s3in(.-

sin a-23 + TA Cos a3 + 0("V (3*37)



[COS 2 cOs + s "sin i)

+r sin 03 Sin /,52 - 0"3 J + TA sn,3 0 A=-Y(-8

Assuming that 0(lI/ *) where TA>> I (this appears to be a reason-

able approach if one considers the response of a spinning body when

the term 18AI is much greater than unity) and if terms of*O(1/

are neglected, then the solution to (3.35) through (3.38) is written

as follows:
ao a 4 $i¢3.39)

sin7'(cos j)(3.140)a2 2 Yt'¢o 3

(341)

T 21 (3.42)

Let us now consider a geometric Interpretation of the above

results. From'(3.39) it is evident that the radius of the circle

defined by (3.31) approaches zero as L- o; therefore, in the limit,

optimal control which satisfies boundary conditions of the form given

by (3.8) is a constant moment about the y' axis. Note that the optimal

control corresponding to those state boundary conditions defined in

Section 3.5.2 is also a steadily applied moment about the y' axis.

Examining the control defined by (3.39) through (3.h2) in greater

detail one observes certain characteristics in common with those des-

cribed in Section 3.5.1. First, the center of the circle lies at

approximately (0, -1) iti both cases. In addlfion, froa (3.11O) we find
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that 2  Thus, the trajectory of (3.31) is nearly syetriC

02  2 T A~ hs ysuut^V I
about the P2 axis. In view of the correlation observed to this point it

appears reasonable to make the following conjectures as to the exact

structure of the optimal control:

1. The parameter Z3 is independent of (the center of the circle

remains at (0, -1); hence,

~ (3.43)
32

2. The phase angle a2 is given by

for all values of L.

3.5.4 Optimal Steering: The General Case
When = -T) and J =- the optimal steering functions,

Whna 2  TA 3 2

Equations (3.29) and (3.30).become:

T

ol cos ( )
U( y, ( (3.46)

+ l-2a 1 cos (r-A)

Rewriting (3.9) and (3.10) in complex form and multiplying the results

JT*

e gives
Ti . A  2

TA [u * (.) + iu,.,(.)3 dC 0 (3.7')x °J
0



Substituting (3.45) and (3.46) into (3.47), (3.11), and (3.12) we find:

~L z

f = f sin '

+ 2 65 Co -v d

(51 + 1)1 c -a, -

S1 - K2coCos 2  I

(3.149)

!,sin d ' = 0 (3.50)
~~ 1 1~ 2 1Cos -I ~o 2 '=L

I K2cos + (1d 
21S

where

(+l)
01,

Note that the integrands of (3.48) and (3..50) are odd functions of 9#

therefore, these equations are satisfied for all values of C1 and TA .

Thus it appears that the expressions for a 2 and a 3 as given by (3.43)

and (3.44) are correct.

The remaining task is one of expressing aI Mid TA in terms of LY.

Such a solution is readily obtained if we introduce the new independent

variable

v = -(t' + 7r) . (3. 52)

Thus, (3.49) and (3.51) can be rewritten as follows:



( i+l 1 l-K2sin2 v dv + (I- i f- 2  =0 (353)

z
1 2 +1

1T n 1 Ly (3.54)
2IT

Note that the terms of the above expressions are elliptic integrals of.

the first and second kinds and, therefore, can be evaluated directly

from their respective tables once ai and TA are known.

To solve for aI and TA in terms of the following iterative

procedure was employed: First, appropriate values were assigned to TA

and Ct was then adjusted until the two terms of (3.53) became equal in
t *
magnitude. This procedure was then repeated for each TA. The results

arq presented in Figure 3.4. Since (3.53) is identical to (3.54) if

the sign of the second term in the former is reversed, the solution

for TA in terms of Ly is direct. The results of this computation are

shown in Figure 3.5. By cross plotting between Figures 3.4 and 3.5 we

are able to evaluate aI in terms of L; these results are presented in

Figure 3.6,

It should be pointed out that the aforementioned procedure for

computing a1 and TA cannot be employed when I<< 1. This is due to the

fact that accurate interpolation from a table of elliptic integrals

becomes difficult wben both K?-+ I and 7,r ir/2 ( an elliptic integral

of the first kind is not defined for K2= I when the amplitude becomes

r/2). Therefore, in order to determine the behavior of both 'a" and TAI A

when << 1, the integration of (3.53) and (3.54) was carried out on a
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1.0

ad

Equation (3.39)

0.5

0
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02 47 67r 7 8 r lTr 12r

Figure 3.6 Solution for'a1 in Terms of

digital computer using a sixth order Rungc-Kutta procedure. The comp-

utational technique was again one of iteratively adjusting O. for a

given Auntil (3.53) was satisfied; the corresponding value of

was then determined from (3.54). The results are presented in Figure

3.7. As could be expected an elliptic integral of the first kind,

evaluated on the interval [ , when TA<< 1, is very sensitive to

changes in (X1 as K
2- I. In contrast an elliptic integral of the second

kind is relatively insensitive to changes in a1 for 0.99 a1 < I;

therefore, a good approximation for TA can be obtained from Equation

(3,54)which ecome

f I - A T dt = (3;55)
0

when aI= 1. If one neglects terms of o( '3) in the power series

representation of sin A ' then (3.55) can be rewritten as
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T 2 (3.56)

To demonstrate the accuracy of this approximation (3.56) is plotted

agqinst the numerical solution in Figure 3.7.

o.4. 0.9999

AT o.9996
0.2 aO09993

K -Equation (3.56) 0.9990

0 0.9987
0 0.01 0.02 -_ 0.03 0.04

Figure 3.7 Results of the Computer Solution for a 1 and TA

3.6 A Sufficient Condition for Time-Optimal Control

In the previous sections we derived a control law which satisfies

the necessary condition provided by the maximum principle. In addition,

from a physical interpretation this control "appears" to be optimal. We

shall now strengthen our claim as to the optimality of the control

through the concept of the Hamilton-Jacobi equation.

First, we find that for each point (X, r) in R)4 x (0, TA) the

Hamiltonian, Equation (3.14), has a unique absolute minimum when

is given by Equations (3.15) and (3.16). In addition, this control is a

continuous function of TTE[O, TA]. Thus, both the trajectory and the

cost functional corresponding to a given pair (P(O), TA) are suffi-

ciently smooth to allow the Hamilton-Jacobi equation to be applied

globally.



We note that for many problems the Hamilton-JacobL equation,

being a partial differential equation, is often difficult if not is-

possible to solve. In cases where a complete global solution cannot be

found it may still be possible to use this equation to check the

optimality of a control derived from the maximum principle along part-

icular trajectories. This is the approach we must resort to since it is

not, in general, possible to write the steering law, Equations (3.29)

and (3.30), in terms of a continuous error signal. In the sequel we

show that solutions to the Hamilton-Jacobi equation can be found along

trajectories between certain pairs of those initial and final states

described by Equation (3.8). While this approach does not show that a

global sufficiency condition is satisfied it, nevertheless, serves to

strengthen our confidence that the control given by Equation (3.29)

and (3.30) is indeed optimal.

For our minimum time control problem the Hata~lton-Jacobi equation

is

P) , U N + ('I 1 - ' -
x y oLY

(3.57)

In cases where u,(r) = 0 and u ,(,r) = -1 for all e[0, TA] (i.e., for

trajectories connecting the state points (0, 0, 0, 0) and (0, 0, 0,

-mlr, m = 2,4,6,...)) the above equation becomes

_W (.J 7; 1" (3.58)
y x Xy Y UXx X; Y

A solution to (3.58) with boundary conditions J = 0 at 'x' = ' =LX

Y =0 is-y Ot
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j -L (3.59)
y

This is the exact expression we obtain by solving (3.7) for W' 1 y1

Ilk, and LY when ux,(T) = 0, u y,() -1, and then solving the resulting

expressions for T in terms of the normalized state variables, i.e.,

J - T Moreover, we find that = P )Hence, (3.45) and (3.46)

satisfy both the necessary and sufficient conditions for optimality

when C 1 0.

This result agrees with the solution one would obtain from a

direct inspection of the control problem for those boundary conditions

described previously. That is, the entire control moment is applied as

co-linear as possible with the desired angular momentum change I zWsf.

Moreover, the characteristics of the steering functions, as observed

up to this pointcoincide with those predicted by a heuristic approach

to the control problem; therefore, in the absence of a rigorous proof

ye will consider the control given by (3.45) and (3.46) to be optimal.

3.7 Stffmr of the Controller Characteristics

It is convenient to consider the characteristics of the time-

optimal control in terms of Z.. Thus the results may be logically

separated into three sections. The first corresponds to values of Ly

less than 27r where control is effected over a "short period of time"

or in terms of T less than one revolution of the vehicle about the

spin axis when Iz/I = 1. The second group corresponds to values of I.

greater than 2r. In this range the local maximum of a1 decreases as 11Y

becomes large. For Ly greater than approximately 167I the optimal

control is nearly a steadily applied moment. The third group is

V
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comprised of discrete values of L . When = m- , m - 2,L,6,..., is

identically zero; therefore, the optimal control is a constant moment

about the y axis.

3.7.1 Optimal Control When LY_ 27r

Control in this region is bounded by two different modes of

operation: a constant moment about the y' axis when L - 2 r, and the

"race-brake" type of control as L- O0. The latter is obviously a limit-

ing case if one considers either the geometric interpretation of the

control or the position of the gimballed thruster with respect to I as

TA- 0.

First, let us summarize the characteristics of the optimal steer-

ing functions when 1<< 1. In the previous analysis we found that the

arc defined by the point p in Figure 3.2 is symmetric with respect to

the P axis and has length a 1TA. From Figure 3.4 we find that a 1-.1 as

Y-0; therefore, u ,( )/u*,( )-*0 as the are defined by (3.31) de-

creases in length and is shifted toward the origin. Hence, in the limit

the control operates in a "race-brake" mode.

Additional insight as to the behavior of the optimal control

when Lyj< I can be gained if we consider the position of the control

jet with respect to T. Define the angle between tl.e thruster and the x'

axis by g as shown in Figure 3.8. Expressing t in terms of the control

components we find

SIr - k, o = t(o), (3.60)

O= tan1  ] --1 _ ir. (3.61)tan(
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Figure 3.8 Definition of Thruster Position

From Equations (3.45) and (3.46) plots of g vs T for specific values of

* can be constructed. The results of such computation for typicalTA

values of TA arc presented in Figure 3.9.

i r

A2

Fipure 3.9 Plots of Thruster Position vs T

When curv-s similiar to those in Figure 3.9 are plotted for yet

smaller values TA (TA <zr) it becomes apparent that g J-w when

LY"O (see Figt'v 3.10) and the control approaches the "race-brake"

mode of operati--.. This characteristic of the control law is illus-'

trated by traje.x-: -ries plotted in the (t- ) plane (see Figures 3.11

and 3.12). Fro7- :*--ese plots we note Lhat the ratio of Lx to LI
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decreases as Ly is reduced and therefore there Is less out of plane

motion due to precession of the spin axis.

2
to

0 2r

Figure 3.10 Initial Thruster Position vs

3.7.2 Optimal Control en Ly> 2?r

in this case the local maximum of a decreases as increases,

and the control approaches a steadily applied moment about the y' axis.

The closed form solution for a1 and TA, as given by (3.39) and

(3.42), is represented by the dashed curves in Figures 3.5 and 3.6

(note that these relations were obtained under the assumption that

C1= 0(1/),TA 1). Moreover, we also note that the terms of

O(1/TA) which were neglected in Equation (3.35) are identically zero

when Ly = mV, m = 2,4,6,...; consequently, (3.39) is a good represen-

tation of a1 when m = r.

As illustrated by Figure 3.6 the solution to (3-.54) approaches

the predicted linear relation as Ly increases. An empirical approx-

imation to the exact solution is given by

T A (: .2
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For large values of the control approaches a steadily applied

moment; consequently, we expect trajectories in the (W ,-W ,) plane to
x y

be nearly circular in shape. This situation is illustrated by Figure

3.18.

3.7.3 Optimal Control When Ly = MrT, m . 2,4,6,...

For these ordered values of Ly the optimal control is a constant* '
moment about the y' axis (u ,Qr) = 0, u = -) and is, therefore,
nearly aligned during the entire interval [0, TA] with the desired

angular momentum change I w 8 . The response of the system when this

type of control is applied is illustrated by Figures 3.13, 3.15, and

3.17 where trajectories in the (" ,- y,) plane are circles defined by

x y

IN(~ - 1)2 ~ (3.63)

When a1- 0 the terminal time in seconds is given by

t m
fi

where p is the nutation frequency.

I

I
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CHAPTER 1

TIME-OPTIMAL STEERING WHEN CONTROL IS PROVIDED BY
BODY-FIXED REACTION JETS

The problem consider--I in this chapter is one of synthesizing

minimum time controls for the jet configurations depicted in Figure 1.1,

Cases (B) through (D). The maximum principle is used to provide a

necessary condition for time-optimality. A solution to the resulting

two point boundary value problem is obtained through an analytic tech-

nique when the final time is small compared to the spin rate or, in

the general case, by an iterative procedure which requires the use of a

digital computer. Since the steering functions obtained in this manner

are not expressed in terms of a continuous error signal they would not,

in general, be used to generate optimal controls in feedback systems.

However, true$ time-optimal control laws have been determined for a

wide range of vehicle configurations and reorientation angles; the

steering functions are presented graphically in terms of a set of di-

mensionless parameters - as in the previous chapter.

Therefore, the results should be useful in the design of active

control systems.

4.1 Equations of Motion

In this section the dynamical equitions for a spinning vehicle

are developed when control is provided by Jet Configurations (b)

through (D). In the discussions which follow, except where noted, the
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three controller configurations are considered simultaneously since

Controllers (C) and (D) are special cases of (B)'.

Asstume that one pair of jets delivers a thrust ? (t) and the

X

second paiir ? (t) as shown in Figure 4A.

y

f x

xx

Vaa

y

Figure 4.1. Schematic of the Body-Fixed Control Jets

Thus, the control moments which appear in equation (2.27) can be ex-

pressed as

M(t) = a f(t) (4.)
x x

M(t) =a. f(t) (4.2)
y y

where. (a) is the moment arm. If the thrust of each jet is bounded by F

then If(t)1S F and 1 (t)l < F. Define the new control variables

U x(t) and u (t) by
y

u (t) = x (4.3), =x F

y~t) (t)
, t = a_ (4.4)y F
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thus Iu (t)I_.l and juy(t)<_l. We can no, write the control as follows:

Mx (t) = ° ux(t) (4o5)

M(t) .M • u (t) (4.6)
y y

where M = a * F. After substituting (4.5) and (4.6) into (2.27) we

find that the controlled equation becomes:
0700o o () I ' 0

d' a) 0 0 0 Z(O) o 0

77 0 04..a()0
du,...,, 0 0 0 0 t.() cos(,+ o ) -sin(,+P o) u(a)

!Y) o 0 0 0 !,(O) ,in(a + o) cos(a+po)
(I&.7)

where the dimensionless angular velocities and momentum components are:

IW W (t) W 1Ww (t) WsLX(t) w L(t)W_ (.a Y- a ,Xa ,1IY(

'nd

a =Wst8

From a computational standpoint it is very convenient to describe the

system dynamics in the above form. However, if we are interested in

the instantaneous position of the spin axis then a representation

similar to Equations (2.18) and (2.19) must be employed. For the pres-

ent case we can define the spin axis position in terms of rotations

about the x' and y' axis as follows:

LX(ca) = [(,,(v)sin(v +o) , y(v)cos(v +,o)dv (4.8)

)(
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When control is provided by four jets, Case (B), the vector (a)

has two components; therefore, the space cf'admissible controls 'B is

a square in R2. The dynamical systems corresponding to Cases (d) and

(D) can be obtained from (4.7) by setting ux(a) M 0 for all ae[O, T]

and restricting the remaining component in the following manner: ()

for Case (c) u y(a) ct-l, 1, and (2) for Case (D) u y() c[o, 1].

The boundary conditions considered in conjunction with (4.7) are

as follows:

ro()= C~o (T~) 0

w(0) =~ Z .(T)=0
y y y(41.10)

I W20 sin 4p
-(O 35Cs0 oosn +2a0 0m T

Z x(o) si os + W-0 s .(T)= 0Y-x y oM M

In cases where o= o =0 the origin is considered to be the initial

x y

state of the system ( = 0).

It should be noted that wo and Zo need not be zero as was the
x y

case in Chapter 3. in general, optimal controls for Jet Configurations

(B) through (D) must be determined by numerical means; therefore, a

non-zero initial nutation rate presents no additional computational

difficulties. Also, it is of no apparent advantage to specify the

boundary conditions in regulator form since the angular velocity and

momentum equations are not coupled; therefore, setting all the final

states equal to zero does not simplify the control problem.

.Solving (4n7) for ln(T), s(T), L (T), and !(T) subject to

(11.10) results in the following set of governing equations w;hich must
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be satisfied by the admissible steering functions ux( ) and uy(a):x y
T

III(a) cot ya - Uy(a) sin oajda + C)(0) = 0 (4.l)

fu x(a) sin ya + u (a) cos 7aida + 0 (O) = 0 (4.12)
0y y

Eu.(a) cog (a + po) - u (a) sin (a+ 0o)]da +%i(o) - 0 (4.13)
S(a) sin (Cr+Ao) + Uy(a) cog (*+j%)]d + t(o) (4.14)

Thus the control-(the pair (!_(a),T) which satisfies (4.11) through

(4.14)) is a function of the dimensionless physical parameters Z, C,

7 Oand Ty hen 0 - o or by a similiar set when of = 0. At this

point it should be noted that control laws which are expressed in terms

of these parameters can be applied when Tx(T) 0 0 if coordinate System

II is pre-rotated through the angle o (see Equation (3.13)). However,

unlike the case considered in the previous chapter where the control

Jet could be oriented arbitrarily in the (x-y) plane, we must account

for the change in 00 as coordinate system II is rotated about the ZR

axis. Also, note that if wo = Zo = 0 then the control which satisfies
x y

(4.11) through (4.14) can be applied when the boundary conditions are

specified in regulator form (0) - i(T)= 0

4.2 Some Symmetry Properties of the Control

In many of the cases which are investigated in subsequent sec-

tions it is assumed that Z = Zo = 0. Under such conditions we can
x y

show that the controls which satisfy (4.11) through (4.14), whether

they are admissible or not, have certain syrnretry properties when ref-

erenced to the despun coordinate system.

To demonstrate this symmetry let us first consider the case when
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control is provided by Jet Configuratltn (B). If the pair (j(0), )

satisfies (4.11) through (4.14) when 0 < o < r/2 then the steering

functions a x(a) and u(c) and the final time T corresponding to

w/2 < 00 < 2n) can be determined as follows:

1. For ,r/2 < 0 <

U U y(a),, u y(ar) - -u T

2. For w < <31/2

UX(a)= -;y(a), uy(a)= -;(a) , T= (4.,6)

3. For 37c/2 < 0 < 2w

ux(a) a 4 (a) , u (a~) u -c

To show that the above controls satisfy the requirement that

Z (0) y (0) = x(T) = y(T) = 0 we substitute (4.15) through (4.17),

in sequence, into (4'.11) and (4.12); the resulting equations have the

same form as (4.11) and (4.12). Substituting the following expressions

+ , +  ,o (4.18)

in addition to (4.15) through (4.17), in sequence, into (4.13) and

(4.14) we find that the resulting pair of equations is identical to

(4.13) and (4.14) in each case. Thus, control lats corresponding to

F/2 < p < 21c can be readily determined from those corresponding to
0

0 < o < g/2 when y and T remain constant.0 y

Performing a similar analysis in the case when control is pro-

r vided by two jets we can readily show that if ( y(a). T) satisfies the

governing equations for 0 e po <r then the control law for c < o < 2c

is given by
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U.c,).- ) ,T T (4.19)

f°o " * + g . When control is provided by a single thruster only a

positive (negative) control torque is available; therefore, we must

iolve equations (4.11) through (4.14) for the pair (u (a), T) for each<I y
set of values of the physical parameters y, p. and (in terms of

there is no simple relation between the control laws as was found in

the previous cases).

4.3 A NecessarX and Sufficient Condition for Optiwality

In Section 2.2 we showed that Control Systems (B) through (D) are

normal. Hence, the maximum principle provides both a necessary and

sufficient condition for optimality. Forming the Hamiltonian

H PI(O)[y6 y (a) + u X(cT)] + P2 (ar)[-yw (a)+U (17)1 P(a[x a

cos(Or+)-U()si( +o)] + P4 (a)[u (C)sin(ap o) (4.20)

+ U (a) Cos(0 0 )+ .

Maximization of the Hamiltonian subject to the constraints given by

Equations (4.3) and (4.4) occurs when

ufa SGN(a)]% Controller (B) 1(4.21)F J
0: Controllers (C) ane (D)

iGN[S(y0]: Controllers (B) and (C)(

y UIC° W] Controller (D)

where

[1, Sy(o) 0

u'[S~r 10 Lo
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Sx(a) +P(r) + Ps(a)cos(q +PO) + P,')ain (a + ) (4.23)

S (() - " P3(a)sin(+A3) + P,(e)cos ( or. (14.24)
y

The adjoint variables, P (a) through P4(a), which satisfy the canonical

equations

cPi a dPP aH P d , aH _d -A
da r'da ryda t'y .

can be written in vector form as follows

Pi(a) cos Ya $in Ya 0 0 P91

0P2(a) -sin ya Cos ya 0 0 P2

P3(a) 0 0 1 0 (P.25

P4(a) 0 0 0 1 P

where P through P4 are constants of integration. In view of (4.25)

the switching functions become:

Sx(a) = al sin (ya + C(2) + a4 sin (a+a3) (4.26)

S y(a) = al cos (Va + a2) + N cos (a+03) (4.27)

Since the steering functions are bang-bang the optimal control is

independent of P(a) ; therefore, only three components of the initial

adjoint vector are essential. Thus, we can set either a, = I or a4 = 1

without loss of generality.

Upon substitution of the optimal steering functions (4.21) and

(4.22) into (4.11) through (4.14) we find that the only terms not fixed

by the system description are a and T*. Hence, the governing equations

can be written in vector form as

x(T*) = x(o) + _(_, V). (4.28)

The normalization procedure, that is, the choice of an appropriate .i
as the unit element, is discussed in Appendix A.
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Equation (4.28) represents a mapping between the pair (a, T) and X(T*)

for a given x(o). Thus, the problem of determining a minimum time con-

trol is equivalent to that of finding a inverse to (4.28).

The remainder of this chapter is devoted to the problem of syn-

thesizing exact optimal controls for specified ranges of values of the

physical parameters wo°0 W,y , A and Ly. First, the characteristics

of the optimal controls are investigated when T << 1. To include a

more general class of boundary conditions and system parameters we then

discuss the development and application of a numerical procedure for

solving a number of two point boundary value problems.

4.4 Optimal Steering When the Dimensionless Final Time is Small

Compared to Unity

In this section we consider the optival control problem when

T <<. As in the previous chapter, control of both the vehicle's

attitude and transverse components of angular velocity over the inter-

val [0, T ] *when T <<1 is referred to as the "short-time" control

problem. The motivation for studying the characteristics of the opt-

imal control law when the final time is small bas been discussed in

Chapter 1.

4.4.1 The Case When Control is Provided by Four Jets

For 0<[O, T B, TB<< 1, Equations (4.11) through (4.14) become:

T

(ux (or) (1 - -(a) (ya)] dcr + o(TB) =0 (4.29)

f[U (cr) (Yar) + u (ai)(I - a + o(TB) = 0(4.30)
o

)u(a) Kl + K3 ca?] da + = 0

0 (4.31)
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fl (aF){K 1a+,2( 2) 2~dc( aj) d i>da + oT) (4-32)
0

when o = 0 and K =COS 00, K = sin 0o. The mathematical prob-
X y 2

lem is now one of determining an optimal control in terms of the dimen-

sionless parameters y, 0 and t such that (4.29) through (4.32) are

satisfied. From the necessary condition provided by the maximum prin-

ciple we found that the optimal steering functions are bang-bang. Con-

sequently, it is possible to completely describe the optimal control in

terms of the iwitching times, the initial value of the steering func-

tions, and the final time. If the control is given in this form then

it is unnecessary to compute the initial adjoint a as is usually done;

to add completeness we show in Appendix C that there exists a corres-

ponding g. Instead, a method is presented whereby the number of times

each component of u*(a) changes sign can be determined from. the switch-

ing functions. Once the optimal switching sequence has been estab-

lished, the actual switch times, the initial value of the control, and

the time at which control is terminated are determined from a simul-

taneous solution to Equations (4.29) through (4.32).

The first step in this procedure is to establish upper limits on

the number of times u*(a) and uf(a) change sign in the interval (0,T').x y 'B

Since the steering functions are uniquely defined by Sx(a) and Sy () we

can determine the maximum number of switchings in (o ,T) T < T', by
B B- B'

examining the roots of the following equations:

Sx(ai al sin (yai+ a_) + sin (ai+a ) = 0 (4.-3)

where i = 1, 2, 3 ,.*.*hx . cje(O, T)
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Sy )(a Q1 cos (rj + 0t2) + Cos (aj +3) (.34)
where

j = 1, 2, 3 ..... hy e(OT

Tr the above switching functions it is possible to show that (h)a=3max

and =3 when T' < ,7.2 Furthermore, by examining the roots of

(4.33) and (4.34) simultaneously, we find that the switching sequence

given in Table 4.1 represent the maximum numbdr of times both ux(a) and

u*(Cg) change in the interval (O, T'); that is, the sum hx + hy is a

Imaxium. Thus, from the maximum principle, we find that if u(a) is

optimal for ae(OT11 then h~ + h < 3 and, in addition, both U(a) and

u*(,) must operate at their extreme values. Control laws which require
7
the sum hX + h to be less than three can be eliminated as candidates

for optimal steering if we assume that the initial (final) state does

not lie on a switching surface which contains time-optimal trajectories.

In view of this assumption the task of determining an optimal control

which satisfies (4.29) through (4.32) becomes one of choosing an appro-

priate switching sequence from Table 4.1 and then solving for the exact

switch times, u*(O), and the final time.
tes

CASE h hx y

1-a 3 0

1-b 0 3

2-a 1 2

2-b 21

Table 4.1. Maximum Number of Switchings when TB < T'
B

2Consult Appendix C for a detailed discussion of this topic.

3For example, if hx = 3 then u(a) will not be optimal if hy > 1.

*11
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Let us first consider Cases (1-a) and (1-b). If the steering

functions which appear in Equations (4.29) through (4.32) operate in a

bang-bang a Ie and switch according to (1-a) or (1-b) then we find, by

comparing terms which appear on the left sides of the resulting equa-

tions on an order of magnitude basis, that both u*(a) and u*()*must
x y

at least one switch point in the interval (0,T'). Therefore, cases

(1-a) and (1-b) can be elminated as candidates since this type of

switching carniot satisfy the boundary conditions specified by (4.10).

At this point the problem becomes one of determining whether Switching

Sequence (2-a) or (2-b) is to be applied in a particular situation. To

complete the task we must then compute the exact switch times, the

final time, and the initial value of the steering functions.

Let us proceed according to the following schedule: First, bang-

bang control which switches according to the logic given by Cases (2-a)

and (2-b) is substituted into (3.29) through (3.32); the resulting sets

of equations are then solved simultaneously for the three switch times

and the final time. From these results we can then determine !u*(0)

and, in addition, specify on the basis of the system description the

correct switching sequence.

Bang-bang control which is governed by Switching Logic (2-a) can

be represented geometrically as shown in Figure h,2.

1 
u y (a)

0 ar 0a
Cr T ayo T

-1B -2 B

Figure 4.2. A Geometric Representation of Switching Sequence (n-a)
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Upon substitution of this control into Equations (4.29) through

(4,32) and after straightforward mathematical manipulation we find:

- -3 VC ta -) ] " C(Y2

+ 21 7+ 't Y's
[- [.[ ;2- +) +0 (4.36)

1 l !2

g1 [(qa-T 3 " + 22 - ) - + ( 2-

222

1 X11 X+ 2 T

hha od 3 &e4s or ro2[ ]s:
2 2B3 C 1 3 +2.

..r uC{q) ..(o O() (Y2

3. 3 1. 3 +- 2 0 2 2 *-uX(0) 4.8

= c + : ((.o)

when terms of O(T ) are neglected and u a

se switching times can be written as cona s of linear and

higher order terms as follows:
xC +e (4.39)

7 -CT +(4.40)

1- 23 2
-C T + 63 (4.41)~2 3 B

Substituting the above expressions into (4,5 through (4.37) and

solving the resulting equations simultaneously for the required para-

meters gives:

I1 I. C~ (l tan~ C30 tan 0
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tan 90

+oT ""% - 0¢)

E2 - , tan0 o+ W tan30o ,+O(T)

E3 =I-('r+l)U o 3Zyi tan 50 U* tan2 p.+z~ tan:3 ft]:+OT)

With the switching times known it is now possible to solve (4.38) for

the dimensionless final time

T= 2 OS 0os0. (4.42)

Note hst terms of o(iB ) have been neglected in this solution. Also

note that the switching times and the final time are functions of u(O)

as well as of the phys.( parameters y, 0o and EY. To determine u(c)

we must refer to both Equation (4.42) and the necessary condition for

time optimality. First, ux(O) is chosen such that the radicand in

(4.42) is positive. Since (y-1) < 0 for -1 < y < I and if 0 < po < /2

then ux(0) - I when ; > 0 and u (O) = -1 when 1 < 0. Unfortunately,

U yu(0) cannot be determined in a similar manner since it only appears

in terms of O(i B ) in Equation (4.38). However, when both the switching
B

sequence and the initial value of one component of u(O) are known then

the initial value of Lhe second component is given by the necessary

condition for time optimality. Thus, when > 0 and 00 0 we find

that S (0) > 0 and therefore u (0) = I.
y y

To determine those values of the physical parameters for which

the optimal steering functions are given qualitatively by Switching.

Sequence (2-a),ux(.O) = 1, u (0) = 1, we must investigate the behavior
xy

of the switching points as changes are made in r ,starting at fo 0.
I0
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Note that is the only physical parameter which appears I t.. first

order terms of (4.40) and (4.41) and, therefore, representai the strong-

est Influence on the location of the switching points within te Inter-

-Val (0, 7j). If uo is positive then ;Y and are shifted toward z.ro

when p0 is montone increasing and 0 < 1o < */"4 . It is readily shown
0

that E2 is negative when 0 < p < x/ 4 ; consequently, the switch point
y 0

is lost from the left end of the interval (0, T.) when preaches a,

value which is slightly less than s/4l. The exact value of 0o at which

this occure depends, of course, on both the system description and the

reorientation angle and is denoted by Io (see Figure 4.3). Thus when

o > po the optimal steering functions are no longer described quali-

tatively by Switching Sequence (2-a). To determine an explicit rela-

tion between I' and the physical parameters we must consider both

Switching Sequence (2-a) and (2-b).

It

y

x

Figure 4.3. Definition of I'
0
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When the switching logic is given -by case (2-b) the optimal con-

trol can be represented geometrically as shown in Figure 4.4.

U( r ) uy (4)

-I -I..
0 ' 05

Figure 4.4. A Geometric Representation of Switching Sequence (2-b)

Substituting this control into Equations (4.29) through (4.32) and

after straightforward mathematical manipulation we find:

20 - X4T,_.72C(aX(,,)3_. ],{X)3+I T3J - '( :CY)2_ 1 T2 1 43

2012 23 1 3 2 0. IF 2a 2 ' (43

X(a)2_ ( - 1 +B2 u0 2r-1 a~~ Y)3 T3 =o 4.4

2o0 2 -  2 3 x1

X)3a~ _a J!4 )3 +~ T3 - K2 (?(a ) + 1. T2 '2:1¢ 3 1)3 J2 B (2 = (4.4)

It 0[2 Y)3 - J y,, ( 1 - TB)-¢ (4.45)

+I 2 ~~c~ 3 3.2 2

o I T2 uo 2, -T o

when terms of 0(7') are neglected.

Following the procedure outlined in the previous paragraph we

write the switching times as combinations of linear and higher order

terms:
X I'

.C + (4.47)
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x (4.48)

In this case:

01

O( 1 (U cot el ee - u cot 

sinl

0+ ((l.)o . Coit p+o UOCot2po_ 2± cOo B+O(rT
23

p eu +s72_) + r o hat e0pU Cot 2 P- 2U cot(- . rs + rd ad

72cot

Solving Equation (4.46) for the dimensionless final time when terms of

Second, from the necessary condition for optimality we find tha't when

the switching sequence is given by (2-b) and Sy(O) < 0 then S(O) > 0

therefore U (O) = .

By observing the behavior of the switching times as changes are

00

The inta valu o f the steigftosae determined thrs aus o ugth py a

parameters for which the optimal steering is specified qualitatively by

Switching sequence (2-b). If uS s negative then and are shifted

toward the right end of the interval (O,TB) when to is monotone de-

x *
creasing and < 1o < ic/2. As o -. , we find that 2 - and at the

Pot Po
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critical value, 00 0; p # en this situation occurs there

are only two switching points in the Interval (T I ) and therefore

switching Sequence (2-b) no longer represents optimal steering since we

have assumed that (h+h) - 3. two, the problem of determining I is

equivalent to that of computing a value of jo for which - 0 and

X T=  Using Equations (4.40) and (4.0) it is readily shown that

Pio, - r). (4.51)

In sumary, we find that the optimal control which satisfies

Equations (4.29) through (4.32) has the following characteristics:

1. When 0 < 0o < 0o the optimal switching logic is given by (2-a).

Hence, u*(a) operates in a "race-brake" mode with the switch time
located at nearly T/2. The second steering function, u*(a),

y

switches twice in the interval (0,T;), and the sitching points are

shifted toward zero when P. is monotone increasing, 0 < o"

002. When 0o < o< itI2 the optimal switching logic is given by (-)

Here, u(a) operates in a race-brake mode. The remaining steering
y

function, u*(a), switches twice in the interval (0,T*), and the
twc B'

switching times are shifted toward zero when p is monotone in-

creasing, ' < < r/2.
f;0

3. The optimal control corresponding to 0er/2,2) can be readily

determined from the sy-imetry properties of the reachable set as

outlined by Equations (4.15) through (4.17).

4.4.2 The Case When Control is Provided by Two Jets

The controller configuration considered in this section is de-
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picted in Figure l.l.C. Since the two-jet 'ontroller is a special case

of t ie four-jet configuration the optimal steering function is given by

i°  Equation (4.22). Our objective is to obtain an explicit expression for

the optimal control in terms of the physical parf'"eters such that

Equations (4.11) through (4.14) are satisfied when ux(q) -0 and

!~ T<< 1.

Following both the assumptions made and the method of analysis

employed in Si.ction 4.4.1 we find that (hy ) max(hy ) min3. Therefore.

the mathematical problem becomes one of solving for the switching times

Y, ' y  the initial value of the steering function u'(O); and the

dimensionless final time TC,

When TC < 1 Equations (4.11) throuah (4.14) become:

T_.

S()[y-u + O(oy)Ida = 0 (4.52)

f 2

" ) - )a+ *- ) + O(o4 )]da = -0 (4.55)
foy 2

equations cubic terms have been retained in the pow er series represen-

tation of both sin 7 anid sin ; it is readily shown that the left side
of (4.55) is identically zero if u() satisfies (4.52) through (4.54)

and providing the remainder terms of the previously w entioued pow¢er

series are of O(aZ). Since this order of accuracy must be maintained

in order to ensure that the left side o1f (1i. 5) is ncot idctie, l~y

fero, it is worthwhi=e to determine the order of abagovtede of TC in

xero,
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terms of before an attempt is made to solve (4.52) through (4.55)

for the switching times and the final time.

Consider the case When KI a 1 and g. = 0. Combining equations

(4.53) and (4.55) we find
T _7'2 )e + O( 4)]Uy().=y(.6

0

therefore

However, if i= 0 and 't2 = 1 it follows that

2)'? + O(79)]U (U)da = (4.58)
oy

hence

henc 0 ~j O~Z i(Tr). (4.59)

In view of (4.57) and (4.59) it is evident that the reorientation time

depends very strongly on the initial position of the thrusters. That

is, the form of the functional relation between T! and t depends upon
C Y

In contrast, when control is provided by four jets p only in-

fluences the radicand in (4.42) and (4.50).

In view of the above discussion it does not appear worthwhile to

employ the method of solution described in the previous section to

determine the optimal control for the two-jet cotroller. However,

since the system is totally controllable there exists a pair (c ,T*)

which satisfies (4.11) through (4.14), ux(a) - O, when T << 1. Such

controls have been computed numerically and are described in Section

4.5.2.



4-5 A Numerical Procedure for Coiroutin. Time-Optimal Controls

t In general, it is not possible to solve directly for the optimal

control when steering is provided by Thruster Configurations (B)

through (D). Therefore, some type of numerical procedure must be used

to solve the two point boundary value problem. In this secticn an

iterative technique for solving the two point boundary value problem is

discussed, and optimal controls are computed for two classes of bound-

ary conditions. As a result of this flooding we are able to deduce

both the qualitative and quantitative structure of the optimal control.

4.5.1 A Systematic Variation of the Physical Parameters

The equations which must be satisfied by tr optimal control can

be written in vector form as

X(T)X(o) + 1(y, 5 c9, T). (4.60)

The control problem now becomes one of solving (4.60) for the pair

(2, T*) or, equivalently, that of determining an inverse tc F. It is

impossible, in generel, to evaluate this inverse analytically; there-

fore, an iterative procedure is suggested. Unfortunately, in the lat-

ter method the parameters x(y), x(O), v, and 5o must be specified

prior to any numerical computation. Therefore, if we are to synthesize

optimal control laws for a wide range of vehicle cbnfigurations and re-

orientation angles, then the iterative procedure must be applied re-

peatedly as appropriate changes are made in the plysical parameters.

In the follo.ing paragraphs a method is pre,.ented whereby elact

time-optimal controls based on the dimensionless physicrJ plr;',.;.ers
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rooty and pare computed writh a. modest expenditure of copue

xcompute

time./ Specifically, this method involves computing optimal trajector-

ies between selected sets of points in the normalized state space

X(i.e., flooding). Since the resulting control laws are specified in

terms of the physical parameters, the affect of changes in these dimen-

sionless quantities on the optimal control is readily observed. Thus 4
the necessity of condensing the system parameters into a reduced number

of dimensionless parameters becomes apparent. If this technique is not

-used then: (1) the number of cases which must be considered increases

significantly, and in turn the computation time becomes excessive,and

(2) the global characteristics of the optimal control cannot be readily

determined.

To establish guidelines for a flooding process the following

questions concerning the design of an active control system are con-

sidered:

1. For a specific vehicle configuration (i.e., given geometry, spin

rate, and thruster configuration) what is the fainimum control mo-

ment required to reorient the spacecraft through a specified angle

in a given amount of time?

2: What is the affect of initial non-zero transverse components of an-

gular velocity on the minimum time required to control a spacecraft

to a given terminal attitude?

3. How do changes in the spacecraft's geometry, mass and spin rate iu-

fluence the minimum time for reorientation?

4. For a given rate of propellant expenditure how do the various con-

troller configurations compare with one another in terms of the
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minimum time required to reorient the spin axis through a given

angle?

By systematically perturbing the physical parameters as indicated

in the following outline and solving the resulting two point boundary

V' value problem at each step we are able to provide answers to the above

questions and, in addition, illuminate the basic structure of the mini-

mum time control problem:

I. For a given geometry and mass (i.e., y = constant) the character-

istics of the optimal control in terms of spin rate, reorientation

angle, and control magnitude are a determined by varying t when

Sao = 0 and o - constant.

2. The influence of the spacecraft's geometry and mass on the optimal

control is investigated by systematically varying y in Item 1.

In Items I and 2 above it is assumed that tX(T)= 0. In Section

4.1 we found the optimal control corresponding to boundary condi-

tions of the form given by (4.10) can be applied when Lx(T) 4 0 if

Coordinate System II is prerotated through the angle 0o. Therefore,

the influence of both %(T) 0 0 and the initial orientation of the

thruster(s) on the optimal control are determined by systematically

varying 0o for fixed values of w:, Zy, L and 7"

.4. The affect of Co 0 0 or Zo 0 0 on the optimal control is determinedx y
by systematically varying these quantities while holding ;, 0o and

7 constant.

To implement the flooding procedure described above an algorithm

was developed for'solving the required number of two point boundary

value problems with a modest expenditure of computer time. Specifi-
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cally, a method similar to that proposed. by Knudsen [15] was employed

(see Appendix A). Knudsen's algorithm like those of Neustadt's [16],

[171, Eaton's (181, and Plant's (191 relies on the connection between

the system's adjoint equations and the time-optimal control. In order

to initiate the computational process a "guess" is made for the pair

( , T"). The iterative procedure is then used to systematically cor-

rect the control and the final time until Equations (4.11) through

(4.14) are satisfied. In this procedure, like those proposed by other

authors, the number of iterations required to converge on the optimal

control depends upon how close the nominal control is to the optimal

control. The major advantage of a Newton type iterative procedure

(both Knudsen's and Plant's techniques make use of the basic Newton

recursive relation) is that it converges rapidly when this error is

small.

An efficient algorithm was designed around Knudsen's iteraLive

procedure by taking advantage of the fact that exact analytic solutions

to the two point boundary value problem have been found for certain

values of the parameters o , and y. Thus, in general, the~~~~~~~x' y' 0Y oad7 hs ngnrl h

error between the computed and actual control laws is small if small

variations are made in the physical parameters strrting from those

values for which the control law is known. For example, in Item 1,

page 82, small changes were made in %, (EY)i+l = (MY) + A E1, starting

at =(rY),; in this case the control corresponding to ry) l was

determined by analytic methods (see Section 4.5.2).

In certain situations physical parameters were chosen as starting

points in the flooding process for which the control could not b.
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determined by straightforward analytic methods. Under such circum-

stances a guess was made for the pair (L_,T*); the iterative procedure

was then used to compute the required control. Once a "starting" con-

trol had been determined the flooding process was carried out as out-

lined previously,

4.5.2 Analytic Solutions to the Control Problem

In this section our primary objective is to provide exact time-

optimal controls which can be used as starting points for the floooing

process when wo = ao = 0. For convenience We can rewrite the governingx y

equations which must be satisfied by the optimal control as follows:

T

fn X (a) cos 7a - uy (a) sin 7a]da = 0 (4.61)
oT
fP ux(q) sin 7a + uy(c) cos 7a]da = 0 (4.62)

oTfux(a) cos (a + 00) - uy (a) sin (a + po)]da 0 (4.63)

fux(o) sin (a +o)+uy (a) cos (a + 00)Ida .- y (4.64)
0

In addition, if the control is optimal then the steering functions must

have the following form:

u'(o) = SGN l sin (7a+a 2 ) + sin (a + c 3)] (4.65)

uy(* ) = SGN[acx cos (7u +0)+ tos (a + Oc)] (4.66)
y

In Chapter 3 we found that the control which generates optimal traject-

ories between certain initial and final state points is a constant mo-

ment about y' axis; a similar situation occurs when control is provided

by Thruster Configurations (B) through (D). However, in the latter



cases the control jets are rigidly attached to the spacecraft; hence,

the most efficient mode of operation occurs when the control moments

are applied either in phase or v radiaus out of phase with the coef-

ficients of u (a) and u (a) in (4.64). The optimal steering functions
x y

(4.65) and (4.66) will be of this form when a, = 0 and a3 = o It

is readily shown that Equations (4.63) and (4.64) are satisfied if the

control is given by

U*(a) =sGN[-sin(a+ 0 )1: Controller (B) - (4.6T)L 0 0: Controllers (C) and (D) "

u*(a) - IN(-cos(a+po)1: Controllers (B) and (C
Lu' [-cos(y+po)]: Controller(D) (4.68)

= mi, m = 2, 4, 6, 8,..... (4.69)

when the normalized angular momentum assumes those values in

Table 4.2.

ly 4-Jets 2-Jets 1-Jet

kly 4m j miI

Table 4.2. Maximum Values for L; when T* 14 Given by Equation

(4.69)

However, it is evident that (4.61) and (4.62) are not satisfied for all

values of TO as given by (4.69) when u* is defined by (4.67) and (4.68

Therefore we must judiciously select appropriate values for m from

among those given by (4.69). This can be accomplished through a phys-

ical interpretation of the integrands which appear in (4 61) and (44.62).

First, the control moments change sign at a frequency which is directly

proportional to the spin rate. Second, the coefficients of Ux () and

{x

j
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U() oscillate at a frequency which is.proportional to the difference

between the spin and nutation rates (i.e., 7y = (I- I/I)wt). It can

bereadily shown that the integral over [O,mit] of the product of such

I I functions is zero when the spin and nutation rates are related by

w. (l - ) - (4.7o)

I 0

where m] and m2 are integers. Thus one value of m for which Equations

(4.61) through (h.64) are satisfied is given by

M M 2. = (4.7l)

Note that in deriving (4.TO) and (4.71) we have assumed that T is a

rational number; for engineering purposes this is not restrictive since

there exists a rational number which is arbitrarily close to any given

number in R.,

Let us now demonstrate the validity of Equation (4.71) when con-

trol is provided by Jet Configurations (B) and (C). Specifically, we

wish to show that each term in (4.61) and (4.62) is identically zero

when uo(u), u*(O) and ? are given by Equations (4.67), (4.68), and
x y

(4.69) respectively. Actually, we need only consider terms of the form

T

i - fSGNcsin(ar + q3)]cos ya da (4.72)
o T

- amfSGN~sin(or + %~)]sin 7a d(4.73)
0

since the control which appears in the remaining terms changes sign ac

the same frequency but is shifted by v/2 (it will be showLi that

= = 0 for all values of q 3). Define a new independent variablex y
T

o' by ' = -". Thus (4.72) and (4.73) become
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N[+ sin (a' + cr3)]cos yu dal (444

-JT Tr

SG[ sin (ar' + a 3 )lsin y'a' dal (4&.J5)

where T =2nm.

If a = 0,g then r = 0 since the integrand of (4.74) is an odd func-x

tion of a'. In general, integration of (4.74). yields

x = (l) sin y7[a + (m-J)Di. (4.T6)

After straightforward mathematical manipulation this equation becomes

m, 2M ml
rp= . (.i)j Cos Yjr + E (-I)Jcos yj7]sin 7. 3 -[i:z (-)JsinyJ

x 7 ' J=l J'm1 + J.l

a1 (4.T7)
+ £ (-l) J  sin J C cos 7 .

J=mi + I

If m, (m2 ) is an even integer and m2 (ml) is odd then the first m,

terms exactly cancel the second mI terms; a similar situation occurs in

the coefficient of cos 7 3 . However, when m, and m2 are both odd we

find:

Mi 2mi.
E (-l) j cos yjir = 0, E (-1)

j cos 7j, - 0
j=l J=mi1 +

ml
E i 7' =I J (ml si j1

Hence, if T = 2rm = 2irma/7 then 0' 0 irrespective of the value of
x

a3 . By following a similar procedure we can readily show that Z' = 0.
y

Therefore, Equations (4.61) through (4.64) are satisfied when al = 0,

a3= o + 3, T = 2=m, for those valu,'s L.y given in Table 4.2 when
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control is provided by Jet Configurations (B) and (C).

If the system is controlled by a single Jet then the above pro-

cedure for selecting a "starting" contrcl cannot be applied directly.

This is due to the fact that the minimum time control has coast peri-

ods. If the final time is to be indeed a minimum then the control must

terminate with a thrust period; this fact must be considered when choos.

ing the pair (g, T). Also, the final time associated with those valuet

of LY given in Table 4.2 may no longer be independent of 00 as is the

case when control is provided by Thruster Configurations (B) and (C).

When w/2 < o < 3:K/2 the primary criterion for choosing a control

is tat f mximzin t~for a given TD. Thus, u*(a) must operate

either in phase (ty(T) > O) or it radians out of phase. (ty(T) < 0) with

cos (a + po) . in order to satisfy the requirement that the control

terminates with a thrust period we can set T = a 9mal. It is readily

shown that the pair (u*(O), 7 )* which is now completely specified,

satisfies Equations (4.61) and (4.64) for those values of k given by
Table 4.2. To comlete the solution we must demonstrate that the trans-

verse components of angular velocity are zero when 7 = -0. Substitut-

ing (4.68) and (4.69) into (4.61) and (4.62) gives:
23 Sr

I [f-cos(a + P.) Isin7 da (4.T8)

o 2121

um f'-cos(a + po) cos yr da (4.79)
0

In view of the definition of control set n the function U[ ] is

+ I ;['cos(a +0o > 0

U,~~~~~ [ -o;[ 0 )1 0 j-cos(C' +0() < 0
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Thus, after straightforward mathematical manipulation (4.T8) becomes

- ([ (_l)Jcos yli(.+J) + Cos M2 7C (-) I00 C r('+J)Jcos Y
X Jul 2Jul2

+ [ (-)Jsin y,,d + J) + cos m2 , (-l) si T + J)] un , o
Jul Jul1

(4.80)

If m, (m2 ) is an even integer and m2 (m ) is odd then:

E (-l)Jcos 71t( + J)= -COS m2 frE (_l)J"Icos 7.(-.+ j)
J-2 Jl2

m2. m. I m

E (.4)J sin 7,(1+j)= -Cos m2 n 1: (-l)j 'sin 7n(-+J)
J _l J = l

However, if both mI and m2 are odd integers then:

L(-)Jcos y7 ( + j) =0 ; E. (-)j+ o .+j) =o0

Jul J=l

E (-l)Jsin yir(I +J) 0 0 ; Z (-1)J+lin y,(!+j) 0

Ju 2- Ju 2l

Therefore, 2 = 0 irrespective of the value of o By a similar pro-
xr0

cedure we can show that Z = 0.
y

Now, let us consider the case when 3v/2 < 0o:< 53r/2. For values

of p within this range the control will not terminate with a thrust

period if, as in the previous cases, the initial cp-state is selected

so as to maximize 1¥ for a specified final time-namely T = 21cnl. That

is, the choice for a cannot be based on the assumption that u'(c) must
y

operate directly in phase (E < O) or it radians out of phase (M > 0)

with cos(a + p0). However, as will be shown presently the proper choice

for the initial co-state is that ry which nearly rTxinzes Ty for a
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First, let us consider possible choices for TD. If TD < 2= 1

then (4.64) is not satisfied for those values of y given in Table 4.1.
Therefore TD > 2n. When a. = 0 and o = v the control wilt

terminate with a thrust period if the normalized final time is defined

by

TD >2=.%+ 00, 0 0(14.81)

TD >2xm + 5 - 0, Le <p <21t(14.82)

If T is given by either (4.81) or (4.82) it is readily shown that

(4.63) is not satisfied; in addition, ty will be larger than the de-

sired value.

In previous work we showed that r(T) . Z (T) . 0 when a, . 0

Cb = t + o and T = 2mn. Changing the normalized final time from this

value to

.2=3 + o + C 0 < (4.83)

TD "2ms + " o <  o < 2v (4.84)

where e < I introduces an additional coast perioe plus a thrust period

of duration c. Thus Zx(T) and ~ (T) will be very nearly zero. A de-

tailed examination of (4.64) shows that if TD is Fiven by (4.83) or

(4.84) and % > <it + 0, then the actual value of ; is less than the

desired value. In addition, (4.63) is not satisfied. Actually, the

difference between (EY)actuai and (tY)required increases as a3 is made

less than or greater than 00 + v; in order to reduce this error TD must
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be made larger than that specified by (k.83) or (4.84). Therefore,

there can be but one conclusion - 0 , 0. In view of the previous dis-

cussion the following appear to be reascnable starting values for the

iterative procedure: a = 0(E), c 1w x + OO T given by Equation

(4.83) or (4.84). Note that the normalized final time is no longer

independent of as was the case when :/2 < j3-- 3x/2.

4.6 Simulation Results for Control System B

The flooding procedure outlined in Section 4.5.1, which utilizes

the iterative method described in Appendix A, was programmed for a

Burroughs B5500 digital computer. Optimal controls were then computed

for a number of different vehicle configurations and boundary condi-

tions. The objective was to provide sufficient quantitative results to

allow a discussion of the characteristics of the optimal controls in

view of those questions posed in Section 4.5.1. In the present section,

as well as in those that follow, results of this numerical approach are

summarized and a number of comments concerning the structure of the

optimal controls are presented.
Optimal controls defined quantitatively by (a_,T*), €orresponding

to boundary conditions defined by (3-10), are summarized in Figures

4.6 through 4.16. For discussion purposes, and in view of the goals

outlined in 4.5.1, it is convenient to separate these results into

three pe Ls. First, from Figures 4.6 through 4.1) we can make certain

observations as to the characteristics of the optimal control in terms

of the vehicles shape and mass, its spin rate, the control magnitude,

and the maneuvering angle ef when o = o = 0. Second, to demonstrate
x y
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the Lfluence of 0 on 7 optimal controls have been computed in terts

of the pair (p , !7). These solutions allow us to make certain con-

Jectures as to the geometry of the minimum time isochrones when: (1)

7C, and (2) Z; , .y 0. Finally, Figures 4.14 through 4.16 show

the influence of an initial non-zero transverse component of angular

velocity on the optimal control.

4.6.1 Characteristics of the Optimal Control in Terms of the Vehicle's
Moments of Inertia and Normalized Angular Momentum

The pair (2, T) is plotted in terms of (y. Z.) for Zo-ro 09
x y

0  0 O, in Figures 4.6 through 4.13. From these solutions we find that

the optimal controls for Jet Configurations (A) and (B) have certain

distinguishing traits in common. First, the local maximum of a, de-

creases as increases; therefore, in the limit, when ; -4 a. both

U(O) and Qs;() operate either directly in phase (EY < 0) or v radians

out of pase (; > O) with sin (a + 0o) and cos (a + po) respectively

in (4.14). In this case the dimensionless final time is given by

T-.I . (4.85)

For specific values of ZY, as shown In Figures 4.6 and 4.10, al

is identically zero; hence, the control operates cither directly in

phase or i radians out of phase with sin (CF + o)and cos (a + po)"

Such points represent the most efficient mode of operation since they

correspond to local minima of the dimensionless final time curves with

respect to the limiting linear relation given by (4.85).

For small values of ; (M >> Iz2wf) the dimensionless final time

and switch times are given by (4.39) through (4.50). Note that onc
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component of u*(a), depending upon the relation between o an . '$
0 0

operates in a "race-brake" mode. In this respect the control is quite

similar tt that for the gimballed jet. It is of interest to compare

the time required (in seconds) for the 4 -jet controller to that for the

gimballed jet to reorient a given spacecraft through a specified angle

when T_ << I (T* << 1). From (3.56), (4.42), and (4.50) we find:

I Ofg* (t ), - .; - (Gimballed JTet) (4.86)

(t*) ~ 1 -2 2~cos 3

fB ~ T 0  0 0 < o (48T)
ap

(4-Jets)

(t 2E j--- ,0 3 <' (4.88)

where 0 is the maximum total rate of propellant flow to the control

jet(s). Thus, when a comparison is based on a given , and when both

and are "small" we find that the 4 -jet configuration requires at

most %r2(t*)A seconds to reorient a spinning vehicle.

Consider now the behavior of T* in terms of the pair (7, "' ) for
B Y

values of ty excluded by the "short time" solutions. Figure 4.6 shows

that when y > 0 and ty < 10 increasing 7(decreasing Iz /) always re-

fleets in an increase in T for a given Note
B rt..thsieberdc

* when 7 is reduced from 0.8 to 0.6 compared to changes in

T' corresponding to similar reductlons in 71 when y < 0.6. Also note
B

that for y = 0.01, 0.2, anO 0.4 the dinmesnsionless final time is nearly

that given by (14.85) which is reprevnted by the dasheor linc.
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In contrast, when y < 0 the minimum time curves, in general, lie

very close to the straight line defined by (4.85). A noteable deiia-

tion occurs when t¥ < 4; however, the dispersion is not as great as

when y > 0. This behavior can be attributed to changes in the vehicle's

mass distribution as y increase3 from -0.8 to + 0.8. Such changes tend

to reduce the sensitivity of the system to control inputs. This fact

is clearly illustrated in Figures 4.17, 4.18, 4.21, and 4.22 where

optimal trajectories are plotted in terms of y for fixed values of

within the range of interest (i.e., y < 10). Note that the motion of

the spin axis tends to assume the characteristics of that of a non-

spinning body as y -4 1. That is, the ratio of -(a) to Ly(a) decreases

as y increases. This is due to the fact that the nutation rate is pro-

4
portional to I z/I. In this respect the "short time" solution resem-

bles that for the single axis control of a non-spinning body. Thus a

decrease in the nutation rate coupled with an increase in the trans-

verse moment of inertia results in an increase in T-. However, as

indicated by the progressively larger values of T* as y changes from

0.4 to 0.8 for a given EY, the dimensionless final time is not directly

proportional to y. This can be attributed to the rapid change in the

vehicle's mass distribution as y - l. That is, for a given change in 7

the transverse moment of inertia must increase according to the follow-

ing relation

Iz A

4Results of the "short time" analysis, Equations ( a.212) ,n'l (;.r°),

show that I is the only system parancter which influenccs YiD.
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when Iz remains constant. In contrast, the geometry of a symmetrical

body approaches that of an infinitely thin disk as y -,-1.

Figu, res 4.1o through 4.13 show that when > 10 the minimum time

control is one which nearly maximizes the change in angulac momentum

I sWf over a given interval of time. That is, u*(a) and u*Q() operate

nearly i radians out of phase with sin (C +0o) and cos (a +pO ) re-
0

spectively. This behavior is also observed in the optimal control when

y > 0. However, comparing Figures 4.6 and 4.10 we find that, in gen-

eral, I 1  < 0 < IC117 > 0 and, in addition, that a1l < 0 damps out
more rapidly than all 7 > O" Therefore, the minimum time curves shown

in Figure 4.13 approach the linear relation given by (4.87) for smaller

values of L1, then when y > 0, Figure 4.9. This is further illustrated

by Figures 4.22 through 4.24 where optimal crajectories of the spin

axis are plotted for specific values of the parameters (y, Ly). Note

that when a, is "small" (i.e., IcJi< 0.2) the optimal trajectories are

characterized by a sequence of "half loops"; in view of the trajector-

ies shown in Figures 3.13, 3.15, and 3.17 this response is similar to

that of System (A) when the optimal steering law is a steadily applied

moment about the y' axis.

4.6.2 Influence of Initial Thruster Position on the Optimal Control

In section 4.2 it was shown that the optimal control possesses

certain symmetry properties when wo = wo = 0. Specifically, it was
x y

noted that if the control which satisfies (4.11) through (4.lh) is

known for 0 < o < rt/2 then it is also known for I/P < po < Pr, In

addition, when th . control is expressod in terms of both r, and f y we
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are able to transform boundary conditions where Lx(T) A 0 to the form

of (4.10) by a prerotation of Coordinate System II through the angle Eo"

Therefore, once controls have been computed in terms of the pair ,

0 < 0e < v/2, then it is possible to plot minimum time isochrones in

the ( -%)plane.

Through successive applications of the iterative technique de-

scribed in Appendix A optimal controls corresponding to specific values

o~f the pair (o' %) have been determined for 7 -0.2 and 7 = 0.6.

Results of this numerical computation indicate that for engineering pur-

pos:.es 7B is independent of o when ty : 1.0. Upon further investiga-

Lion of the problem it was noted that the value of fy at which % be-

gins to influence TB depends upon 7. From the numerical results for

7 = -0,2, 0.6 and in view of Figures 4.6 and 4.13 it appears reasonable

to make the following conjecture as to the relation between eB and the
B

pair (7, 0)" In general, ,T remains sensitive to changes in 00 for

increasingly larger values of % as 7 " I. Hence, the greater the

deviation between the actual value of T'_ and the limiting linear rela-
B

tion (Figures 4.6 and 4.13) the more sensitive T becomes to changes in

00. Sinca the minimum time isochrones for 7 = -0.2, 0.6 when ry > 1.0

are nearly circular, we find that the time required to reach a terminal

state point in the aX " ) plane is very close to that given by

Figures 4.6 and 4.13; therefore, the numerical results for 0 0 are

not presented..

5Note that the minimum tlrmc Isochrones for Controller (A) are circles
for all values of Ty.

I@
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4.6.3. Influence of an Iimitial Non-Zero Transverse Component of
Angular Velocity on the Optimal Control

In this section we consider the optimal control problem when the

total angular momentum vector is not aligned with the spin axis at

a = 0. As for the cases considered in previous sections, the iterative

procedure was employed to compute optimal trajectories between certain

pairs of initial and final state points which are of engineering inter;-

es. From thase quantitative results we are then able to conjecture as

to the general nature of the optimal control.,

The initial a£i final states considered are typified by those

shown in Figure 4.5. Hence, we consider situations where the change in

total angular momentum is zero, Case 1; and where the angular momentum

addition aL results in the total angular momentum vector being aligned

with the spin axis at a = T Case 2.

ZR  ZR

Spin axis at 1.Spin axis at -S

S T* axis at
a Oand

Y YR T ),- YR

~ II

XR Case 1 XR Case 2

Figure 4.5. Typical Initiil and Final Spin Axis Positions when 'J 1 0Y
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Case I

A quantitative description of the optimal control, which satis-

flea boundary conditions of the form defined by Case 1, is presented in

isures 4.A1 and 4.15. These results, though not as complete as in

previous sections, are sufficient to give some indication as to the

characteristics of the optimal control in terms of both the system

parameters and the boundary conditions.

The essntial features of optimal steering for two different

vehicle configurations, y = + 0.8, are shown in Figure 4.14. Note that

in all cases when _(o) I 0, _(a) has been normalized with respect toa1 .

Thus ag determines the relative weighting between the high and low fre-

quency terms in Equations (4.26) and (4.27).

At this point it is interesting to compare the characteristics of

the optimal controls when j(O) 0 0 and when j(o) = 0. In the latter

case we found that when ry -4 c the higher frequency terms of the switch-

YY
Ing functions become dominant. In contrast, when o-o,4 = 0, the

y

lower frequency terms dominate; therefore, the optimal control depends

only on the transverse. component of angular velocity. That is, in the

limit, ux(0 ) - sgn[-w(al and Uy(a)=sgn[-wy(a)]. Hance the attitude

control problem can be described by a two dimensi(nal plant involving

w(a) and w (a). Optimal controls for such a two dimensional model arcx y

well known and have been found in terms of the system's state by Athas,

et al. [I]. If the admissible control set is a circle, as in Con-

troller Configuration (A), then in the limit optirmal steering is given

by: -W'(t) t)

u P(t) x ):. -x y 1 (tl
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Let us now examine the characteristics of ua) in terms of y. Figure

4.14 shows that the rate at which (a damps out depends directly on the

vehicle's shape and mass. The reason for this behavior becomes evident

if one considers the unforced motion of the system when w 'A 0. From

yIthe theory we find that the rate at which w precesses about the Z axis

is directly proportional to I z/I. Hence, when I /I is "large" and if
0 .

the controls switch sign at the nutation frequency then
TB T3

Sfu,,(o)da 0 L fuy,()da r 0 (4.91)

0 0

which is required if 0 0. However, if I z/ is "small" and TB is notB

"large" then the average control will not be small and a 0 0. Thus

the higher frequency terms in (4.26) and (4.27r) cannot be neglected.

Case 2

Under certain conditions it may be desirable to drive the spin

axis to a position in the (YR " zR) plane other than that defined by

Of = 0. To qualitatively define the optimal control corresponding to

boundary conditions of this type the iterative procedure was employed

to determine optimal controls for certain initinI ar" fir. l stetes

typified by Case 2. Results for two different vehicle configurations

(y = + 0.8) are presented in Figure (4.16). Also, the dirensionless

final time T* required for controlling spacecraft defined by y = 0.2,
B

-o.4, when the initial and final states are of the form given by Cases

I and 2 is shown in Figure 4.1.

When the change in state i, defined by Cnse 2 it is of interest

to note that the two teris in Eiuations (4.?6 ) and ('..-7) are wcighc
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nearly the same (i.e., 4 1) for those values of W"0 shown in Figure

y
4.16 (this is undoubtedly true for values of IrI 40. Extending these

results allows one to at least qualitatively define the behavior of a! .

and a4 in terms of j(O) and _y.

Typical optimal trajectories in the (x- ty)and 0i: - r ) planes -
are plotted for both Cases I and 2, y = 0.2, -0.4, in Figures 4.25

through 4.29.

4.7 Simulation Results for Control System C

In the previous section ve discussed the salient characteristics

of the optimal control for the 4-jet configuration in terms of the par&-

motors Z,, W' 1, 7' and p0" Noting that the two and four jet control
y x E

systems are similar (i.e., the jets are rigidly attached to and spin

with the vehicle; in addition, nB and pC are symmetrical with respect

to the u and/or u axis) and in view of the numerical results pre-
x y

aented in Figures 4.6 through 4.13 and 4.30 through 4.33 it is evident

that the control laws have certain characterisitcs in common. There-

fore, in this section the influence of the governing parameters on the

optimal contcol is not discussed in detail; instead, a comparison is

made of the "dogree of control" provided by the two control systems.

4.7.1 Characteristics of the Optimal Control in Terms of the

Vehicle's Moments of Inertia and Normalized Angular Momentum

A comparison of the dimensionless final time curves in Figures

4.9, 4.13, and 4.33 shows certain similarities (and differences) in the-

performance of the 4 and 2-jet controllers. First, the rninimum time

required for spin axis reorientation is nearly the sa...n when both ( )



and (C)C are large - independent of the value of y. Results of the

numerical solutions, as summarized in Figure 4.33, indicate chat a good

approximation for the dimensionless final time T*- is given by

CI
(14.92)

when t7 :k 40. Hence,

f C 2I 
('sp

and in the limit when

f C -201*
ap

For values of - 40 the performance capabilities of the two

systems begin to differ; moreover, the relative loss in performance by

the 2-jet system becomes very evident when 1y is small. In this region
y

T! is influenced to a greater degree by the vehicle's moments of iner-
C

tia than is B. Also, the characteristics of the "short tme" solu-

tion differ remarkably when the number of control Jets is reduced from

four to two.

Comparing Figures 4.9 and 4.33 we find Llat, in general, the per-

formance of the two systems are similar from y > C and (:k) 2,
Y B

( )C > 1. The fact that the terminal time is relatively independent

of the controller configuration when y > 0 can be ,attributed to two

factors. First, we know that a "pencil shaped" vehicle responds rela-

tLve*y "slowly" to control inputs when compared to configurations where

y < 0. The influence of coupling between w and w on the syster. re-x y

sponse can be observed if one applies, for cximple, a unit step fun:-
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tion; when < 0 the spin axis undergoes rapid excursions as the result

of this input. Therefore, when y > 0 there is sufficient tim? to apply

both positive and negative control torques about the x' and y' axis

before the spin axis has precessed to an unfavorable position.

The second contributing factor is undoubtedly the control magni-

tude; that is, MC -2K. Thus, it appears that the increase in control

mnsitude nearly compensates for the loss of two jets when ( )C I .

sad y > 0. In contrast, from both the numerical solution and the re-

suits of the "short time" analysis of Section 4.4.2 we find that the

"degree of control" provided by each system begins to differ when

(rY)C S 15, y < 0. In the "short time" case the relative loss in per-

formance is attributed to the geometry of control set nC . Restricting

the control set to the real line [-1, 11 prevents the simultaneous and

proper application of both a "race-brake" moment and a moment which

produces the required change in angular momentum IzWsf

As mentioned previously, the greastest difference in performance

of the two systems occurs when y < 0. A comparison of Figures 4.9 and

4.33 shows that for a fixed value of r there is an increase in T! as
Y C

7- -1. In contrast, the minimum time curves for the 4-jet controller

be very close to limiting curve, defined by (4.87), when -1 < 7 < 0.

Thus, unlike the case when y> 0, control set geometry (11B vs n C) becomes

important when the nutation rate is larger than the spin rate.

A comparison of the minimum time trajectories when control is

provided by both 4-jets and 2-jets shows the similarity in response

when y > 0; Figures 4.17 through 4.19, 4.35 through 4.37 and the differ-

ence when y < 0; Figures 4.Pl through 1.;., 4' .3 throug.h 4.40. Note
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the excessive excursions of the spin axis in Figures 4.33 and 4.39 com-

pared to the optimal motion in Figures 4.22 and 4.23. In the letter

cases the 2-jet system does not provide the "fineness" or "degree" of

control to prevent the spin axis from "looping" and thus traveling in a

direction opposite to that desired. $

4.T.2 Influence of Initial Thruster Position-on the Optimal Control

Through a procedure similar to that described in Section 4.6.2

minimum time controls have been computed in terms of the pair (1o0 !,).

Results for v '. -0.2 are summarized in Figure 4.34. Due to the in-

creased computation time (for the 2-jet system optimal controls must be

computed for 0 < Po < v) only the disk shaped vehicle, y a -0.2, was

considered.

Although optimal controls have been computed for only a single

value of y we can, nevertheless, based upon the results obtained to

this point, deduce the behavior of B in terms of , and po" Let

us begin by reconsidering the results of Section 4.6.2. Here, we

determined that the "degree of control" provided by the 4-jet system is

* such that the minimum time isochrones are nearly circular except when

ty-5 1 (7 - 0.6). In contrast, Figure 4.34 shows that the loss of two

jets has significant influence on the sensitivity of T to change in

o when Ly S 10. In fact, results of the numerical 
solutions show that

the minimum time isochrones do not become circular until ty : 30 for

Y= -0.2. After examining Figure 4.33 we find that, in general, the

difference between the actual value of T and that predicted by (4.92)

increases as fri increases. Therefore based on the behavior of T* inC
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in terms of y we would expect T* to be sensitive to changes in when

1 > 30 for (jy > 0.2.

4.8 Simulation Results for Control System D

From a construction standpoint the single jet design is appealing

because of its simplicity and minimum hardware requirements. Hence,

this controller would be useful in situations -where the weight or space

which is allocated to a control system must be minimized. Also, it may

be desirable to apply the optimal control law for a single jet in the

event of a failure of one or more of the jets in Control Systems (B) or

(C).

Optimal steering for the single jet was developed in Section 4.3

and is given qual~tatively by Equation (4.22). As in previous cases

exact optimal controls (i.e., the pairs (2, T*)) corresponding to se-
D

lected sets of values of the dimensionless parameters i(o), EY, , and

00 were determined by solving a number of two point 
boundary value

problems. From the results of this flooding process, which are pre-

sented in Figures 4.41 through 4.53, we find that optimal steering for

the single jet bears little resemblance to that for the gimballed,

four, or two-jet controllers. This is due to the fact that control set

nD is not symmetric with respect to the origin of the (u.- Uy) refer-

ence system. Actually, certain dissimilarities we're observed when the

switching functipns were derived in Section 4.3. The necessary condi-

tion for optima ity requires that the optimal control contain coast

periods, and in this respect the minimum time system resembles a mini-

mum fuel system. An additional characteristic which is pnctiliar to

. . . . . . .. . . . . . . . . . . . . . . . . . . . . . .
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the single jet is observed in Figures 4.44 and 4.45. Here we note that

the dimensionless final time is not a continuous function of ty. This

means that the maximum recoverable (reachable) sets do not expand con-

tinuously in all directions with increasing time.

For the purpose of the following discussion it is convenient to

consider the optimal control in terms of Ey. First, we find that the

dimensionless final time (Figures 4.41L and 4.45) does not approach zero

in a continuotts fashion as -+ 0. This is in direct contrast to the

behavior, of T* in Control Systems (A) through (C). The lower limit of

ty (i.e., ty - 0) will occur, for example, when the control magnitude

becomes unbounded (i.e., M -#w). Thus aD expands in the positive di-

* rection and in the limit becomes the real line (0, co). However, unlike

nl' B', and OC which expand symmetrically, PD remains unsymmetrical;

and for this reason the system is not completely controllable over an

arbitrarily small interval of time. Note that the lcwer limit of. T,

that is, the smallest subinterval of [0, TD] over which the system is

completely controllable, depends upon both y and po"

Under certain conditions the influence of y on the system's re-

sponse is quite different from that in Cases (A) through (C). Figures

4.44 and 4.45 show that the time required by the Fingle jet to effect

a given change in the state of the system increnses es y -+ 0 for

"small" values of ty. This is in direct contrast to the behavior of

the optimal control for Systems (A) thtough (c) where T decreases when

y -# 0. Such behavior can be attributed to the degree of coupling which

exists between w and W . This coupling becomes wenlker as y - 0 and is
x y

non-existent when y = 0 (the system is not controllable when y = 0).
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Sice a single jet can provide only positive (negative) control moments

there mut be coast periods of sufficient duration to allow Z to be-y

cam negative at least once during the interval (0, T*); this is necezi-

sary since control must terminate with a thrust period which causes
y

to increase. In the absence of control Z oscillates with frequency
y

?w~i; therefore, the time required for f to change from + w° to -zo is
y , y y

proportional to d/7. Thus the coast periods must increase in length as

y "0 0. This requirement is reflected in the switching function, Equa-

tion (4.22), since the low frequency term dominates when both tyand 7

are small (i.e.oIcti > 1, see Figure 4.41).

To illustrate the behavior of the controlled system when t isY

small and, in addition, to attempt to justify the limiting value of

TD, as given in rigures 4.44 and 4.45, optimal trajectories of the spin

axis are plotted in the ( - L) plane (see Figures 4.46 through 4.49,

Note that in all cases represented there are no initial coast periods;

that is, the jet is turned on at 0 even though the spin axis is

initially driven away from the desired terminal position. These fig-

ures also clearly illustrate both the forced response and the force

free motion of a spinning body - a norm invariant system. Note the

rapid excursions of the spin axis in Figure 4.49 compared to the system.

response illustrated in Figure 4.46 (the final times are the same in

both cases). In Figures 4.50 through 4.53 we have attempted to dcmon-

strate the characteristics of minimum time trajectories for vehicle

configurations of practical interest to the engineer (e.g., = 0.05,

-y = + 0.2). Values of t used in the computation of the corresponAing

controls were selected to be similar to OhtVsC in previous sections.
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CHAPTER 5

OPTIMAL CONTROL FOR JETS FIXED TO A NON-SPINNING PLATFORM

The controller configuration considered in this chapter is de-

picted in Figures 1.1.E and 5.1. As shown, the basic spacecraft

consists of two separate sections which are connected at the axis of

symmetry by an ideal (frictionless) bearing. The front section has

been spun up to provide stability. The aft section which houses the

required sensors and four fixed reaction jets has a zero spin rate

with respect to the vehicle's axis of symmetry. The control problem

is again one of properly orienting the spacecraft with respect to

Coordinate System I starting from known initial conditions of the

vehicle's attitude and transverse components of angular velocity.

A control system mounted on a non-spinning platform offers

several advantages when control is required in inertial space. For

example, the de-spun segment of the spacecraft, shown in Figure 5.1,

is fixed with respect to Coordinate System II and, therefore, only

experiences small changes in attitude with respect to the non-

rotating reference frame. Hence, this section of the spacecraft is

ideally suited as a platform for mounting attitude'sensors. In

addition, the optimal control law for the non-spinning jets should be

less complex to mechanize than those for the fixed jet controller

configurations. If the control jets are attached directly to the

spitining vehicle, as in Configurations (B) thro:,gh (D), then t0c jet
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"on-off" times are explicit functions of the spacecraft's roll rate.

In such cases delays in the control loop could conceivably cause

considerable error between the desired and actual terminal state of

the system.

5.1 !_Ruations of Motion

In this section the dynamical equations -for a spinning vehicle

are developed when control is provided by four reaction jets mounted

on a non-spinning platform. The specific control system considered

is shown irt relation to Coordinate Systems II and III in Figure 5.1.

y,

A
"fx

Figure 5.1. Schematic of the Control Jets Fixed to a Non-Spinning
Platform

AAAssume that one pair of jets delivers a thrust f X (t) and the

second pair fy,(t). Thus, the control moments which appear in
y

equation (2.28) can be expressed as
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M,(t) = f ,(t) (5.1)

M ,(t) -a f • ,t) (5.2)

where (a) is the moment arm. If the thrust of each jet is bounded

by F then I ,(t)!%F and Ify,(t)I F. Define the new control variables

uo1(t) and u ,(t) by
y ,(t) (t) (-3

U X XF(5.3)

, (t)

U = (5.4)

thus

I-X,(t0l 1 1, 1 uy,.C(0l-1 1. (5.5)

The control moments are now expressed in terms of uxt(t) and uy,(t):

M,(t) = M u ,(t) (5.6)

Sy,(t) = M u Y,(t) (5.7)

where M = a • F

Combining (2.28), (5.6), and (5.7) yields the controlled equationi

W -) 0 .1 0 0 W I3,T

W y'(r) 1 0 0 0 y,(r) 0 1 u'(T) (58)
L ( ) 0 0 0 0 L ( ) 1 0 y,( )

-0

L x(-) 0 0 0 0 [ X(-) 0 1 uyI(r

y [
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where

I Wi W . r I W W (r...',( ) ZX -
X M -y,, M

T w( L I w L (T)L --- L- L (r -z 8L(

x fiy IM

7 Note that the control jets are assumed to be aligned with the x'- y'

axis; that is, the torque about either the xt' or yo axis depends only

on the thrust from a single pair of jets. The boundary conditions

considered in conjunction with (5.8) are:

0

1,(o) ^ yo Y'wy , ,% o

1 2 2e sin P12 W 2 fsinOf AL (o) : ,+ z , 0° 0 ' 8E f=
Z fI L ~x ( E IML m (5.90)

22 22
(0)I 6 0 cos ( Cf A

Y IM E IM y

Solving (5.8) for 4,(TE), I(TE), L (TE), and L (T ) subject to
x E yE x E y E

(5.9) yields the. following set of governing equations which must be

satisfied by the steering functions u ,(T) and uy
T 
E

( cos'+ u ,(T)sin ,d + 0= (5-1

TE0
u (r) sinr - uy,(')cos -c d- ,' ̂  0 ( " 1

f y y
0
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T A

U ,(r)d + L (o) -L (512)0 x

T=A
Uy,(.)dt + ; (o) = L (5.13)

0 Y

Thus, for those initial and final values of the state variables given

by (5.9), the two point boundary value problem is completely specified

0 A 4 A
by the physical parameters i I, wyO L and L and eO = 0 (or

X y X y

by a similar set when 0 = 0). The mathematical problem is now one

of selecting from among the admissible controls that control which

drives the system from a given initial state to the given terminal

state in less time than any other admissible control.

Since the aim of this study is to investigate the characteristics

of the optimal control in terms of the system description and

boundary conditions, the two point boundary value problem must be

solved repeatedly as changes are made in the physical parameters.

One approach for reducing the resulting computational task is to

assume that the initial transverse components of angular velocity are

zero. This will be the case in a reacquisition maneuver when the

vehicle is not nutating at the time control is applied. By making this

assumption we are then able to plot minimum time isochroncs in the

1x "L y) plane with a reasonable expenditure of computer time.

5.2 Some S1,mmetry Properties of the Control

Controls which satisfy the governing equations, (5.10) through

(5.13), when ^w 01= ^W = 0, whether they are admissible or not, have?
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certain symmetry properties when referenced to the de-spun coordinate

system. That is, if a control has been found which satisfies (5.10)

through (5.13) for a specific value of he pair x, ) then we

can exploit certain symmetry properties of the system in order to

determine the control corresponding to the pair (L y .

To demonstrate the isomorphic properties of the control we first

note that the terminal state of the system can be represented by points

inte t .~)pan hn~ Z, ~ For example, in Figure 5.2

the point p, corresponds to a specific change in the normalized

angular momentum as given by the pair t X * ) P. Also note that the

r, %) plane has been divided into a number of regions. First, the

natural division by the Lx and Ly axis results in four quadrents

denoted by Q1 through Q4 . Then Q1 is divided by the straight line

.C into regions denoted by r1 and r2.

A point P1E r 2 is defined as being "symmetric" to Plcr,

when the following relations are satisfied:

(5.14)

PI Pi

Further, the points p2 eQ2 p 3EQ3, and p4eQ4 are defined as being

"similar" to p when the corresponding pairs Cxt, tY) satisfyl!Q1 Y x
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(Ai (tA)i=12,3(15

x y P y

~1 2, 3

LL

Q2 r1  Q1

1K

pp

Q3  Q4

Figure 5.2. An Example of Symmetric and Similiar Terminal State Points

With these definitions we are now able to express certain relations

between the controls corresponding to terminal states which lie in

quadrents Q1 through Q4. First, if the control (u(), T) P

satisfies equations (5.10) through (5.13) when the pair (L , ^)l

defines a point in r I then the control corresponding to a syirmietry

point in r is defined by the following relations:

Pl P1
u (5.

Pi u (C
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(TE)d. =(TE)pl (TE)pI

Verification of (5.16) is direct in that equations identical in form

to (5.10) through (5.13) are obtained if the mathematical manipulations

indicated by (5o14) and (5.16) are carried out. Second, if the control

(u(j, TE) satisfies Equation (5.10) through (5-.13) when the pair

<I Ly)pl defines a point in Q then the controls corresponding to

"similar" terminal state points in Q2' Q3 and Q are given by:

(u,( )) P =- (Uy( )) P

Pi+l

U= (U,()) i = 1, 2, 3 (5.17)

pi+i Pi

(TE) (TE)

Pi+l Pi

Verification of (5.17) is also direct; the mathematical procedure

follows that for (5.16). The consequene of Equations (5.16) and

(5.17) is one of achieving a substantial reduction in the computer

time required to plot minimum time isochrones in the Zx - L y ) plane.

Thus, due to the symmetry of the isochrones only those terminal states

which lie in rI were considered during the flooding process.

5-3 A Necessary Condition for Time-Optimait

The maximum principle was used to determine necessary conditions

for the optimal steering functions. Forming the llazwiltonian
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H= P + p ( ) " + + )  u'

+ P3 (-) ux,() + P4(T) uy,(r). (5.18)

Maximization of the Hamiltonian subject to the constraints given by

(5.5) occurs when

u ,(-r) = SGN [sx,(r 1  (5.19)

u, (T) = SGN [sy, (] (5.20)

where

+( ) p P(') + P3 (T) (5.21)

y = P2( ) + P4( ). (5.22)

The adjoints, P1 (-) through P4( ), are solutions to the differential

equation

p 1 0 -I 0 0 " l( )

d p2 (-) 1 0 0 0 P2( )d" T =  (523)

P (r) 0 0 0 0 P (

P4() 0 0 0 0

and can be written in vector form as
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elT) cosT -sinT 0 0 P

P2(,) sinT cos T 0 O P0

P 0 0 1 0 PO (5.24)

P4(T) 0 0 0 1 POL J L 1 4

In view of (5.24) the switching functions becdme:

Bx-,( ) = al cos( T + a2) + a 3  (5.25)

8 I(T) = al sin( t + a2) + a 4  (5.26)

The following remarks are a consequence of the necessary condition:

1. Each component of the control vector assumes an extreme value

providing a1 and a3(6/2 and a4) are not simultaneously zero over a

finite period of time. In the case when either s x,(T) 0 or

Sy,(T) = 0 for some interval TI T..r - 2  in (0, TE) then the

SGN[ ] function is not defined over [Tt T21. Therefore, the

maximum principle provides no information as to the structure

of the optimal control.

2. Providing IaI > I a31 ( Ia1 1 > 1a 4 1) then each compo.nent of the

control vector u(i) can remain constant over TI, 21 < 2 r .

If jall < ja3 I (I all < ja 41 ) then one or both components of

u(T) will remain constant over the interval (0, TE1. As will

be shown presently, the relative magnitudes of the components of

the costate vector a have a very profound influence on the

behavior of the iterative procedure that was employed to compute

minimum time controls.
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5.4 Realization of the Optimal Steering Functions

In this chapter, as in previous ones, our goal is to investigate

the characteristics of the optimal steering functions through the use

of a flooding technique. As described in Chapter 4, flooding involves

the computation of optimal controls corresponding to specific sets of

boundary conditions - in this case ordered pairs of the dimensionless

A
angular momentum components L and L (the initial and final nutationx y

rate is assured to be zero). in the previous chapter, the basic

algorithm described in Appendix A, with modifications as given in

Appendix B, proved to be an efficient method for generating

solutions to a large number of two point boundary value problems.

However, a direct application of the algorithm to the control problem

considered in this chapter is not possible since the controlled system

is not normal. In a non-normal system the existence of unique optimal

controls cannot be guaranteed; in fact, the optimal controls corres-

ponding to certain boundary conditions could very well be singular.

For example, ifa= 3 = 0 or a1 = a4 = 0 then either u*,(-)

or u*,() is singular; in the sequel it will be shown that the
y

remaining component must: (1) assume an extreme value, and (2) remain

constant over the interval (0, T*).

At this point we should note that the optimal control for a

non-normal system is not necessarily singular. In fact, in the

literature a number of optimal control problems have been considered

wherein the state space is divided into regions corresponding to those

initial (terminal) state ,oints for which the optimal control is

singular. For Control System (E) we find, after examniug Equations
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(5.10) through (5.13), (5.19) and (5.20), that there exists terminal

states which cannot be reached if singular control is applied to the

system. tn such cases the optimal steering functions are given by

(5.19) and (5.20); therefore, the iterative procedure described in

Appendix A can be employed providing the basic algorithm is modified

to account for the peculiar characteristics of s'() and s().

Such modifications are made to ensure that the proper number of switch-

ing points oc:ur in the interval (0, TE) at each step in the iterative

process. Recalling the control problem considered in Chapter 4, we

find that the computational process failed to converge when the

third switching point was lost from the interval (0, T). Here, due to

the particular form of s ,(T) and s ,(T) it is possible to lose allx Sy,

th
the switching points during the k-n cycle of the iterative process

if lalik < la Ik and lall k < a441 k . Consequently the basic algorithm

was modified to prevent this situation for occuring; the details are

discussed in Appendix B. However, prior to any numerical computation

the question concerning the existence of singular optimal controls had

to be resolved. Therefore, in the following sections a necessary

condition for extremal singular control is discussed, the general

form of a singular steering law is developed, and an effort is made to

determine analytically those sets of therminal states for which the

optimal control is singular.

5.1.1 Singular Control

For the control system considered in this chapter it is possible

to test in a systematic mnnn-r for the existance of singular e:trezmil
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contr6ls. To do this we make use of the Hamiltonian which is a

necessary condition for time-optimality. If either component of the

control vector is singular over an interval [ TV, x2] c (0, TE] then

the corresponding switching function must be zero over this interval.

Suppose that sx (c) = 0 for rE (0, TEl. Since the system is autonomous

and the final time is free, the Hamiltonian must remain constant over

this interval; and in fact

H = P + PO U,(r) = 0 (5.27)

If P =0 theneitherP =0oru ,() =0 for r (0, TEl. P A 0

since the vector P(-) cannot be zero; from the maximum principle we

know that the necessary condition for optimality implies the

existence of a non-zero adjoint vector. If uy(T) = 0 for TE (0, TEl

then almost every point in the (x - t ) plane is not reachable from

the origin (or recoverable with respect to the origin). Therefore,

in general, P p 0. Solving (5.27) for u y() gives

P
0

U ,(tE) T (528

Thus if the extremal control is singular then u ,(T) = constant. This
y

allows us to integrate (5.13) with the following result

L
TZ. = "_X 5.9

E - U,

Hence, TE will be a minimum when uy, assumes an extreme value (i.e.,

u*,(T) = + I). Note that the necessary condition is also satisfied
y

since (5.27) is a maximum whcn u + I Thcereo..e, if a poiflL
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in the (L - Z ) plane can be reached in finxte time when the system

is driven by control of the form:

u,(N) piecewise continuous function of T subject to u i 1
xx

: y,(, _+, t, caetecnolbcms30

then the minimum terminal time is given by

IT LI:I I (5.30)

The result can be readily generalized to include situations when

s y,() - 0 for f [0, TE1. In this case the control becomes:

, 1(-T) piecewise continuous function of T subject touy(-) u5
-y y

and the minimum terminal time is given by

Thus, it is apparent that Tp depends upoi the relative magnitudes of

and L . That is, if the terminal state point is reachable withS y

singular control then the terminal time is determined by the larger

member of the pair (X9 L )"

In the previous discussion one should note that (5.28) is only

a necessary condition for singular control. In practice there may be

terminal states for which one component of the optimal control vector
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is constant and the remaining component is bang-bang and switches

according to either s (T) or s ,(). Such a control is given by the
x y

maximum principle if Ia I < la (Ic I I< 1(y J)and jal I >l41
1 3 1 4 1

(la11> Ia 1) respectively. Thus, for certain terminal states true
1 3

singular control may not be required however, the implication of the

necessary condition for singular control, or the non-normality of the

system, is the non-uniqueness of that componett of the control vector

which does not remain constant over the interval [0, T*]. This

concept will be discussed further in the following section where both

the flooding procedure used to determine the minimum time isochrones

and the numerical results are sunmarized.

5.4.2 The Synthesis of Optimal Controls for a Non-Normal System

The iterative procedure described in Appendix A can be employed

when the system is non-normal providing we are able to define

qualitatively those sets of terminal state points for which the

optimal control is non-singular.1 For the system considered here it

is possible to determine whether the optimal control corresponding to

certain terminal states is singular or non-singular by simply testing

to see if the control in question sotisfies Equationis (5.10) through

(5.13). The specific details of such an analytic investigation are

discussed in the following paragraphs.

In section 5.2 we found that the optimal control possesses

certain symmetry properties. Therefore in the following discussion

ISubsequent to the work performed iii this report a mc'thod was
developed for normalizing non-normal, autonoi.Lous, linear systcmsr ].
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only those controls corresponding to terminal state points in r1 are

considered. The particular points chosen are shown in Figure 5.3

Our objective is now to derive the optimal control(s) corresponding

to points p1 thru P8 ;and, in addition, to determine the mathematical

1 2 3and computational significance of regions r1, r1, and r

The time-optimal controls corresponding to = mrr,x

L=mr, m = 2, 4, 6, 8, ..., (e.g., p1 and p3 ) are unique and can

be written as follows: u,(T) = 1, U ,() = 1,T* = m7r for r [0, MY]

Control of this form is given explicitly by Equations (5.25) and

(5.26) when Ix1 < Ja3 I, la11 < Ia4I,' 3 > 0 and a4 > 0. However,

the steering function can also be classified as singular since, for

example, we can choose a 1 = a 3 = 0 and a4 > 0; in this case we are

free to select u* (T) from the admissible controls, hence,
*x

.u,') = 1 for TE[o, 12 *.
x E

P8 Pl

r3

3 p7  p2 //

37r - _P P227r
1;6 r;

p5  2

4 1

V 0

0 7r 2ir 3V1

Figure 5.3. Regions of Singular and Non-Sin.ular Optimal Control
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The points P6 , PT, p8 are representative of those terminal

states for which the optimal control is not unique. For example, the

following combinations of control laws satisfy equations (5.10)

A Athrough (5.13) when Lx = 0, L = mr, m = 2, 4, 6, 8,

1. u , ) = 0, u,(t = 1, T* = m 7
y

2. +1 for 0<T< -

1 ; for 2- < T < , y ) 1,T=mUy(X l+ 4z yE

+ 1 for 3 -< T< mIr

The terminal state represented by p5 is unique in that it repre-

A A
sents the smallest value of Ly, when Lx = 0, for which equations

(5.10) through (5.13) are satisfied by singular control. In order to

verify this claim we proceed as follows: First, if u* (-) = 1 for all*Uy*

E[O, ]~ and L < n then from (5.13) we find that TE < V • Also,
y

if the transverse components of angular velocity are to be zero at

'= TE then:

EE
f ux,(T) cosT dr = f sinT d (5.32)
0 0

E Ef U(c) sint dt =- r cost dt (5.33)

It is apparent that (5.32) is not satisfied by an admissible u

when v/2 < TE < 7T and that (5.33) is not satisfied when 0 < T., <

Therefore, the optimal steering functiou: correSpolLdirig to L x ,x
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0 <L <7r, must be defined by (5.25) and (5.26).y

Following the procedure outlined in the previous paragraph we

can also show that terminal state points defined by the curve C, when

L < iT, are unreachable from the origin when the control is singular.Y

In view of the previous discussions the following generaliz-

ations concerning the optimal control are conjectured. First, there

is at least one set of terminal state points in rIwhich cannot be

reached when the control is singular. One possible boundary of such

a set is indicated by the closed curve C I in Figure 5.3; the set isI1

denoted by r . Since singular steering to points in r 1 is not

possible the optimal control must then be given explicitly by

Equations (5.25) and (5.26). A second set, denoted by r'2, contains

those terminal state points for which the minimum terminal time is

given by TE = ILy J and I< 27r. Here, we are assuming of course that

u ,(T) = I for rE[O, T ] . In general, we find that if control of the
y E

form uX,(T) = + 1,y, ) = 1, for rc[O, TEl is to satisfy Equations

A 2(3.10) through (313)when the pair (%,.LyI defines a point in r I

then u*,(T) must change sign at least three timer, in the interval

(0, TE). Examining the switching functions we note that

U yI()= 1 if I II < I%1 and a4 > 0. However, in view of the

functional form of sx,(T), it is evident that ux,(T) can switch sign

at most twice when 0 < t < 2ir . Therefore, the control must be

singular; that is, s (T) = 0 for T[o, T ]. This allow:s us to choose

a particular u, (T) from among thc admissible controls w;hich1 in

conjunction with u ,(r) = I satisfies the boundary conditions. Since

the systcm iq not normal u ('r) , y nnt be tniqiic; hov. ver,
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A

in any event, the control will be optimal since TE =Ly when the

control is singular.

Finally, we conjecture that the characteristics of the optimal

control corresponding to terminal state points in r3 are very

similar to those for points in r1 and r1. That is, there are sets of

points in r3 for which the optimal control is given explicitly by

Sx,(t) and st (t) (e.g., p2 ) and those for which the optimal control

is singular (e.g., 6' P T' P8)"

5.4.3 A Numerical Procedure for Computing Optimal Controls

In section 5.4.2 we showed that there exists terminal state

points which cannot be reached from the origin when singular control

is applied to the system. Therefore, the optimal control correspond-

ing to such states must be defined by (5.25) and (5.26). In such

cases the change in.state of the system and the optimal control can

be related by an expression of the form

) = f(, TE). (5.34)

If we assume that the terminal state for which the optimal control is

required does not lie on a switching surface which contains time-

optimal trajectories (i.e., if the total number of switching in

(o, T ) is at least three) then the numerical procedure described

in Appendix A with those modifications indicated in Appendix B can

be employed to iterate for the pair (a, T) The algorithm is then

applied repeatedly, as described in the following paragraph, to

solve a selected number of two point boundary value problems and in
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this manner provide the information necessary to plot minimum time

isochrones in the - L ) plane.
y

By .ollowing the guidelines discussed in 5.4.2 it was found

that the iterative procedure could by successfully employed to solve

the required number of two point boundary value problems. The

following outline summarizes the flooding procedure:

1. The terminal state L = L = 7r was chosen as the starting pointK y

for flooding process; from the previous discussion know that

this point cannot be reached from the origin with singular control.

A guess was made for the pair (_i, T*) , and the iterative pro-
E p4

cedure was then used to improve this guess until the boundary

conditions were satisfied.
A

2. Systematic changes were then made in L by applying the rule:x
AA

Zao -a whereLL. is a small 0.5) positive

perturbation in L Using %=TE)i as a nominal control the

iterative procedure was then applied successively to compute

each pair (, T*)i+1 . This process was terminated when either

UyQ:) = 1 for 1 (0, T 1 or (LxLi+ 1 0.

3. The procedure described in 2 was then repeated for n: starting

AA
points on the curve C. First, perturbations were made in L

x

and L according to the rule: (L). (A). '
y x i+L Lx i

A A A
= - starting from L = L = 7r and termiuatingiAl;ix y

AA
when L = 1 = 0.1. Then, similar perturbations were made start-x y

A =A A Al

ing from L L = 7r and terminating when L = L = 87 Tex y x y

results of this computation are su-nnr ized in Figures .} through

5.6 where minimum time isochrones are plctted in the -
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plane.

The purpose of Figure 5.4 is to show the characteristics of the

optimal control for terminal states in the neighborhood of the origin,

specifically for those points which lie within the square defined by

the L - L axis and the isochrone TE = 2?r. The square is further
x yE

divided into two regions; as predicted in Section 5.4.2 t:he optimal

controls corresponding to those terminal state points enclosed by the

-dashed line are non-singular and for points exterior the optimal

control is singular. The boundary between the two regions was defined

during the flooding process by those values of L andt for which
x y

u ,(Z) first became a constant,,u ,(T) = 1 for e[[O,TEI. Optimal
y yE

controls for almost every point in the singular region of r1 can be

determined numerically by setting

+ .1 for 0 < % <
U I for Tl T < T , y(T) = r =L

x12 y E y

+ I for T T < 3

+1 for T < c < T

3 EJ

and then iterating on the normalized switching tir.Cs T'l c2 and

until equations (5.10) through (5.12) are sati.sfied.3

In Figure 5.5 minimum time isochrones are plotted in that

region of the -x - L ) plane defined by the -L axis and the
y x y

isochrone TE = 47r . Again, the dashed line indicates the boundary

between the terminal states for which the optimal control is non-

singular and those external points for which the optimal control is

singular. Note that the point p3 which also appears in Figure 7.-
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is unique in that the optimal steering functions (u 1 ,(t) = 1,

uy,(r) = I, for r[0, T*1 ) corresponding to this terminal state can
y E

be expressed in two different forms. First, by singular control

when s ,(,)  0 anda 4 > 0 or s ,(-) = 0 anda 3 > 0 for

F [0, TI. Thus we are free to choose either u*(,) or uE x ~

in this case the obvious choices are u ( 1 or u = I for
x y

l'r[0, TE]. Second, explicitly by s , (T) and s y (v) when jail < la 31,
a 3 > 0; and la 1l < 1a 41 , a4 > 0.

In Figure 5.6 minimum time isochrones are plotted in the

(i - iy) plane for values of * < 87r. Note that the sets ofx y T

terminal state points for which the optimal control is non-singular

remain fixed in size and shape and occur repeatedly when ItIand

L y lare monotone increasing and II ~

5.5 Some Comments on the Performance of Control System E

Comparing the optimal control for Jet Configuration (E) to

those for Configuraticns (A) through (D) we find several character-

istics which are important insofar as performance is concerned.

First, let us consider the "short time" case (i.e., M >>I W 2)

when control is provided by Configurations (B) and (E). Under such

conditions the optimal controls for the two systems are nearly

identical. Here we find that the time required to reach a given

terminal state will be an absolute minimum when the thrusters are

00initially oriented at 115 0with respect to the required change in

angular momentum I zWs 0 for Controller (E) (see Figure 5.h) or

nearly h50 for Controller (B). However, as illustrated in Figure
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5.4,the initial orientation of the non-spinning platform for which

0
the final time is an absolute minimum is no longer 45 for those

terminal states which can be reached otimal steering when

A
TE Z 1.5. In such cases, depending upon the magnitudes of Lx and

A
L , both coordinate System II and the control jets should be rotatedy
until the terminal state point lies either on the x' or y' axis or on

the boundary which divides the (L - L ) plane into regions of sing-

AA -ular and non-singular control. Note that when I >2r and

JA >27 the minimum terminal time is relatively insensitive to

changes in the initial position of the jets providing the terminal

state point lies within the region of non-signular control. Also

note that sets of points for which the optimal control is non-

singular remain fixed in size and shape as both t and Lx y

increase. Therefore, in the limit, as . .I and/or y I -

the difference between the absolute minimum final time for a given

value of e + L2)I/2 and that final time which results when pre-• y-

rotation places the jets at an angle of 450 with respect to

Iw e becomes small when compared to t' . Hence a good approxim-

ation to the limiting relation between TE and x , Ly ) can be

determined by flooding the straight line defined jy L = L The

results of such numerical computations are summarized in Figures 5.7

and 5.8.

From the analysis to this point it is evident that the optimal

steering functions for Controllers (A) and (E) have a common character-

istic, apart from those for Configurations (B) through (D), in that

they are not directly dependent on Lhe vehicle's roll rate. Thus for
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certain values of the system parameters and boundary conditions the

optimal steering functions for Controllers (A) and (E) are constant

moments about the x' and/or y' axis. In such cases TA = TE when

three of the four jets in Configuration (E) are shut down and the max-

imum propellant flow 4 supplies the remaining jet.

I0
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CHAPTER 6

PERFORNANCE ANALYSIS

This chapter presents a comparison of the performance capabil-

ities of Jet Configurations (A) through (E). 'Since we are concerned

with minimum time solutions the performance of a control system is

based on the time required to effect a given change in the system's

state. In order to make a fair comparison of the relative performance

of the five jet configurations it was assumed that the maximum rate

of fuel flow is the same for each system (i.e., A = C = = WD =

wE). Thfs assumption also allows us to readily compute the amount of

fuel required by each system to effect a given change in the state

point in minimum time.

Of the two classes of boundary conditions considered in the

previous chapters there is one which is common in all cases - namely,

that defined by those initial states where the vehicle is not nutating

at t = to (i.e., 2(to) = 0). Hence, in the sequel we will be con-

cerned with the ability of each control system to effect a spin axis

reorientation.

6.1. A Performance Comparison When wst* lOI

Let us begin by comparing the performance of the five controllers

when a reorientation of the spin axis is to be accomplished within

five or less revolutions of the vehicle about its axis of symmetry.

To provide the required data, results of the flooding process for
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6.2 Control System Performance When wt >> 1

In contrast to the features of the control problem discussed in

6.1 are those when control is applied continuously, in the case of

Controller (E) a "bang-coast-bang" mode, over a long period of time.

Such is the case, for example, when i << - . In the limiting!2 al sp

IZ ef
case when - co both the analytic and numerical solutions dis-

sp

cussed in previous chapters show that the minimum final time is re-

lated linearly to the change in angular momentum. Summarizing these

results we find:

Configuration A

t* I-ZIW 8 e (6.1)
sp

Configuration B

t* zs8f (6.4)

f awlO
sp

Configuration C

zs f

t*= -i;Y- ' (6.3)
sp

o atiConfiguration D
t* 7I z sf (6.4

sp

C o n f i g u r a t i o n E t 2 w~ 
6 5

sp

Note that in Configuration (E) the thrusters are initially aligned

h5° with respect to the change in angular momentum I ws f
z
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Comparing the control systems in terms .of the amount of fuel

required to carry out a given change in the state point in minimum

time we find:

1. The four, two, and single jet controllers consume 57% more fuel

than the gimballed jet.

2. Four thrusters mounted on a non-spinning platform consume

approximately 41% more fuel than the gimballed jet.

6.3 An Integrated Design Concept

In situations where minimzation of the time or fuel required to

control a spacecraft is of the utmost concern then the integrated

design concept becomes important. One way to formulate this notion

mathematically is as follows: Given the dynamic system

ox =_ () ut, ,t) (6.6)

where the control vector u has components u1, u2, ... u, m n which

are constrained by

Iull + I u2 I + ..... Iul I K (6.7)

and I belongs to an admissible parameter set . The optimal control

problem is now one of selecting the dimension of the controller (m),

as appropriate 1, and u(t) so as to maximize (minimize) the cost

functional
t1

j =f _I((t), _M(t),t,t) dt.
t
0

Admittedly, the problem of choosing (u4(t), m', J*) would be a

difficult one; however, in cases where the cost functional is
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sensitive to changes in (m) and/or considerable improvement in

performance may be obtained.

In previous sections we noted that control jet configuration

has considerable influence on both the minimum time and fuel required

for spin axis reorientation. Moreover, the simulation results indicate

that certain control systems are "better" than others. In view of

this observation let us now consider the concept of integrated design

as defined in'the previous paragraph. For the attitude control

problem this notion amounts to selecting both the control system

and vehicle geometry so as to minimize the final time. To determine

the influence of the vehicle's principal moments of inertia on the

performance index we can make use of the numerical results presented

in Chapters 3, h and 5. Moreover, by systematically changing y in

these solutions we are able to make certain observations as to the

"preferred" vehicle shape.

A cursory examination of the simulation results allows us to

make the following generalizations when the vehicle is a right

circular cylinder; to-include operational constraints it is assumed

that the vehicles mass remains constant and that the inertial stiff-

ness is specified; i.e., Icw = constant:

Controller (B)

A disk shaped vehicle is preferred. Changing y from +0.8

to -o.8 reduces the minimum final time approximately 25%.

Controller (C)

A pericil shaped vehicle is preferred. Changing y from -0.':

to +0.8 reduces the minimum final tiwe by approximitely h i
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Controller (D)

A pencil shaped vehicle is preferred. Changing 7 from -0.8

to +0.8 reduces the minimum final time by approximately 25%.

For this controller there is a considerable loss in per-

formance when 7 approaches zero(changltig from 7V 0 to

7 -0.8 reduces the minimum final time by approximately

50%).

Note that the above conclusions are the result of choosing t such
y

that the solution for T* is not a linear function of the change in

total angular momentum - if the final time is close to that given

by Equations (6.P), (6.3), or (6.1-) then vehicle geometry becomes

unimportant.

a3

~~~................. .
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CHAPTER 74

DISCUSSION AND CONCLUSIONS

In this chapter we first summarize the basic approach taken in

the solution of the attitude control problem; results of this work are

then discussed in more detail; and finally, extensions and uses of this

study are suggested.

Through the use of both analytic and numerical solutions we have

determined exact, minimum time, controls corresponding to certain

classes of boundary conditions which are of engineering interest.

The basic approach was to provide quantitative results in a form which

allows one to deduce the qualitative structure of the optimnal control

for a general class of problems. To provide results uhich would be

useful in the evaluation or selection of spacecraft attitude control

systems a number of different control jet configurations -,ere consider-

ed. Thus, the overall approach was to synthesize opt:nal controls for

various realizable control systems in a manner which allo!:s the

engineer to readily determine such factors as: the relat-.ve efficiency

of a particular jet configuration, the characteristics of the optimal

steering law In terms of the system parameters and boundary conditions,

and the minimum time required for correcting spin axis attitude errors

In a given spacecraft.

In the text optimal controls are presented for two basic classes

of boundary conditions. The first corresponds to those situations where
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the total angular momentum vector and the spin axis are aligned at the

initiation and termination of control. The second set includes those

where the vehicle is nutating at the tiwe control is applied. In the

latter case the objective was to reduce the transverse angular rates *

to zero and at the same time drive the spin axis to a pre-determined

position

Exact optimal controls for Thruster Configurations (A) through

(K) corresponJing to initial and final states of the above form were

then computed for a number of vehicle configurations ranging from

pencil to thin disk shapes. The results are expressed in terms of

from one to four dimensionless parameters. The number of parameters

required to completely define the control problem depends on both the

jet configuration and the initial and final states. For Controllers

(A) and(E) it was possible to combine the system parameters and the

spin ax.s position errors into at most two dimensi,nless parameters,

thus obtaining control laws which are not explicit functions of the

vehicle's moments of inertia. Hence, the results are applicable to

any vehicle configuration which has one axis of symmetry.

In situations where the minimum time required to maneuver a

spacecraft is of importance one would normally employ reaction con-

trollers which produce a sizeable thrust. Hence, the characteristics

of the optimal control under such circumstances will be different from

cases where the available control forces are very small. In view of

the results presented in the text we are able to define qualitatively

and to some extent quentitatively three "modes" of operation which

characterize optimal steering corresponding to the boundnry conditions
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described previously. These "modes" are identified in ter-s of the

response characteristics of the system, the control magnitude, and

the control jet configurations.

The first is characterized by the "short time" control problem.

That is, the time over which control is applied is small compared to

either 1/w or I/I w . Control in this region is typified by the
Z 8

limiting control for the gimballed jet; for this jet configuration

optimal steering becomes "race-brake" when I -.0. This mode also
y

characterizes, though to varying degrees, the behavior of optimal

steering for Controllers (B), (C), and (E). For these jet configur-

ations, as well as the gimballed jet, T*-O as E -.0; therefore, the
y

systems are totally controllable. However, this limiting behavior

does not occur in Controller (D). That is, TD is not a continuous

function of E , in addition (T* - wto) =constant A 0 as Mb-* o;

therefore, the system is not completely controllable over an

arbitrarily small interval of time. This is due to the fact that

optimal steering for the single jet contains coast periods.

Response of a spinning vheicle to optimal control when the

interval (to, tf] is "small" is illustrated in Figures 3.11, 4.17,

4.35 and 4.46. Here we observe the onset of exce&sive excursions of

the spin axis as the dimension of n is reduced and/or as th-e coupling

-between the control and state becomes weaker. We also fin- that in

the "short time" case optimal steering for Controller (E) can never

be singular.

The second mode of operation is characterized by the transition

region between what can be defined as the "short" and "lo-, time"
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solutions. In such cases the control moment is sufficiently large to

effect a reorientation maneuver within approximately one to ten

revolutions of the spacecraft about its spin axis. For a given

control magnitude the region is a function of both the vehicle's

moments of inertia and the jet configuration. Typical thrust require-

ments for controlling, within this time period, a cylindrical shaped

vehicle which is spinning at a high rate are presented in [9].

Response of the system when operated in this range is illustrated in

Figures 3.18, 4.20, 4.23, 4.26, 4.40 and 4.53.

The third mode of operation is characterized by the solution to

the "long time" control problem. For most vehicle configurations this

situation occurs when the available control moments are very small

compared to the required change in the system's total angular momentum.

IzW 2f
In the limit when Z - - we find that the control interval

sp
[to, t* ] is directly proportional to the change in angular momentum;

the exact relation depends, of course, on both the initial and final

states of the system and the control jet configuration. For operational

spacecraft such as Syncom, Early Bird, etc., where the control moments

are indeed small compared to the total angular momentum, we find that

the actual minimum maneuvering time is very close to that predicted

by a linear relation.

The rate at which the actual solution approaches that defined

by a linear relation depends upon both the thruster configuration and

the vehicle's moments of inertia. For the gimballed jet an empirical

approximation to the exact solution is given by Equation 3.26. In

the case when control is provided by four jets the oscillatory
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behavior of the actual solution damps out very rapidly when 1I/l > I

(see Figures 4.9 and 4.13) and for the two jet controller -e4amping

most rapidly when I /I = I (see Figure 4.33). However, when the controlz

is provided by one Jet the situation is somewhat different. Here we

find that the minimum time curves (i.e., plots of the n,merical

results relating T-D to t )are discontitiuous and approach a linear
D y

relation asympcotically; deviation of the actual solutiops from linear

depends very strongly on the vehicle-s moments of inertia. In fact,

the difference becomes infinitely large as I /i1-+l (the system is not

controllable when I /I = 1) and is a minimum when 1 - I A - 1,z

In cases where the vehicle is nutating when control is applied

we have demonstrated the characteristics of the optimal steering

functions in terms of the required changes in the total angular

momentum. For example, it has been shown that the optimal control

which satisfied boundary conditions typified by Case 1, Figure 4.5,

approaches the minimum time solution found in Reference [1] when the

ratio of the initial transverse component of angular momentum to the

maximum control moment.becomes "large". In addition, the difference

between optimal control for the fourth order plant considered in this

report and that corresponding to a second order tystem which includes

only w and w depends strongly on I /.x y z.

In the design of a physically realized control system one must

consider the characteristics of the optimal steering law in addition

to performance. From this standpoint Controller (E) is appealing

since in most casds one can rotate the non-spinning platform to that

position for which the optimal control is in-ula.. I11.s means that
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one jet operates "full on" over the interval [t ,t*] and the remain-
o f

tug pair is driven by either a simple bang-bang or continuous control

law; the choice between bang-bang and continuous depends on the

poeition of the non-spinning platform and on the allowable fuel con-

sumption. This control law is appealing since the system does not

have to respond to complicated bang-bang or on-off strategies as in

Configurations (B), (C), and (D). Also, it wes found during the com-

putation ok optimal steering for the latter contrcllers that the error

*between the desired and actual terminal states ir vensitive to errors

in the switch times. This was particularly true in cases where the

vehicle is disk shaped (i.e., I ./I > 1) and is nutaing at the time

control is applied.

In terms of contributing to control theory we haie shown how the

properties of controllability, total controllability, and normality

determine the characteristics of the optimal control for a realistic

system. In addition, it has been demonstrated to what extent these

Nnotions are influenced by the allowable control set. Further, a

performance comparison .in terms of the time and fuel required to re-

orient the spin axis through a given angle show: that certain control

jet configurations are "better" than others. This difference in per-

formance can be related to the recoverable set cencept as discussed by

kthan and Falb, 113]- in their solution to the angular rate control

1problem.

1The influence of controller configuration on performance i; also
discussed by Dixon [l].

I
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In addition, both the development and the problems associated

with the application of an efficient iterative procedure have been

discussed in detail. Such documentation of the behavior of a pro-

cedure designed to solve two point boundary value problems is necessary,

and too often neglected, if we are to compare the utility of various

numerical schemes when applied to practical engineering problems. In

the present case a Newton type iterative procedure was employed to

determine time-optimal controls for a fourth order norm-invariant

system.

We have also shown that the method of solution, closed form vs

numerical, is dictated to some extent by the allowable control set.

For example, in the case of the gimballed Jet where n is a circle of

unit radius in R2 , we were able to solve the two point boundary value

problem in closed form for a certain class of boundary conditions.

Thus, it appears that by "smoothing" the allowable control se Le.g.,

approximating a hypercube with a super ellipse) one has an increased

chance of solving for the optimal control in closed form.

An obvious extenqion of the present work would be to the problem

of properly reorienting and stabilizing an axially symetric space-

craft when the spin axis attitude error is arbitrtrily large. From

preliminary analysis we have found that when control is provided by

a gimballed jet both the dynamic system and the optimal steering

functions can be represented by a set of four linear and three non-

linear, first order, ordinary differential equations. In cases whete

the total angular oomentum vector and the spin axis are aligned at the

initiation and terminatton of control, and either" 01 initial or
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fi0al position of the spin axis is collnear with the z, axis, then

the system parameters and boundary conditions are completely specified

by two dimensionless parameters. To illuminate the control problem sm

approach similar to that described in the first paragraphs of this

chapter could be employed to determine both the quantitative and

qualitative structure of the optimal control. Since rapid convergence

to required if one is to solve a number of two point boundary value

problems, a technique similar to that proposed by Plant [l?] may be

required. The change between the linear and non-linear cases could

them possibly be effected by modifying the dimensionless parameter

used in the linear solution while retaining the dimensionless change

in the attitude angle. The first approximation would then be the

linear solution.

In terms of the physical parameters the resulting optimal con-

trols would undoubtedly have the same qualitative structure as those

for the linear model. In fact, in those cases where the required

change in angular momentum is large compared to the maxim-- control

torque the optimal control becomes nearly a steadily applied moment,

depending upon the controller configuration, and the respc.se of the

system is typified by that of the linear plant. Hence one should be

able to make use of the results presented in this report to determine

-- the minimum time required for artibrarily large reorientatlons of a

vehiclets spin axis.

The ultimate objective of an optimal solution to the attitude

control problem is, of course, to develop the control in s:ate

feedback form. In the literature one finds many appro,1ch-_-- to this
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problem. However, due to the sensLtivity of the system's response to

errors in the optimal coutrol (e.g., errors in the switch times)

the only practical solution appears to be that in which the control

is given explicitly in terms of the system's current state. Such

closed form solutions have been found when the cost functional is

described by same combination of the state error and the control effort.

It has been shown that large penalties on the control effort tend to

"soft" limit the control magnitude. However, in general, the resulting

control does not resemble min1amn time steering. Thus it would be

worthwhile to investigate the problem of selecting a cost functional

which penalizes excessive time and at the same time allows a closed

form solution (i.e., a quasi-optimal solution to the uLniwmx time

problem).
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APPENDIX A

AN ITERATIVE PROCEDURE FOR COIPUTING
TI -OPTIMAL CONTROLS

A.1 introduction

The equations of motion for a spinning body, when motion is

limited to smell angular excursions, can be described by a vector

differential equation of the following form:

X(t) - AX(t) + B(t) 2(t) (A.1)

Time-optimal coctrols for certain cases of such a linear system are well

km.., e.g., when X is a two dimensional vector representing angular ve-

locity. However, for systems of third order or greater the satisfying

of both the prescribed initial and final values of the state variables

and the necessary condition for optimality usually requires a computa-

tional scheme which involves the use of a high speed digital or analog

computer.

During tne past decade many schemes for computing optimal con-

trols for both linear and non-linear systems have been developed.I In

this section we present a specific technique for snlving two point

boundary value problems of the type described in Chapters 4 and 5.

Specifically, the iterative procedure proposed by Knudsen 1151 with

certain modification suggested by Plant [191 is employed to solve for

the time optimal controls in Systems (B) through (E).

A comprehensive comparison of a number of procedures for computing
optimal controls for linear systems is presented in '191.
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A.2 Philosophy on the Selection of a SouM tionl ?rocedure

The iterative procedure discussed In the sequel was developed in

view of the requirement for solving a lerge number of two point bound-

ary value problems with a modest expenditure of computer time. Addi-.

tional considerations in the synthesis of this algorithm were the

dynamics of the plant, and the particular controller configurations

and boundary conditions described in Chapters 4 and 5. $ince the ob-

jective was tc compute optifal controls for a particular plant no

attempt was made to introduce new theorems pertaining to the conver.

gence of an iterative procedure. in place of formAlly extending

Knudson's algorithm to include non-autonomous systems with vector

controls, the behavior of an iterative procedure developed through a

direct extension of his work is discussed eitensively in Appendix B.

The choice of a Newton type procedure (Knudsents and Plant's

algorithms rely on the basic Newton recursive relation) was motivated

by its simplicity, Its straightforward approach to the problem, and by

its rapid rate of convergence when the guess (.., tf) ic "close enough"

to the solution (a,, tf).. In this procedure a and tf are adjjusted

timultaneously which results in an efficient iterative scheme. Finally,

an upper bound on the rate of convergence of this method exists when

the derived and optimal controls are "close".

A.3 Statement of the Problem

For systems described by a differential equation of the form

X(t) = A(tt X(t) + B(t) !!(t) (A.2)

The nitil, ~ and final, f states are related by the expression
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if - *(t 0 ) 10 + fA-(t (t)u(t)d (A.3)
t

0

where ,(tto), defined for all (t0,t), is a fundamental matrix of

solutions of the homogenous system satisfying the additional require-

mat that 0 (tto) = [I] for all t.
1' 0

The system described by Equation (2.27).are normal when the

admissible control sets are defined by AB through fl ; therefore,
D

the maximum principle provides both a necessary and sufficient

condition for the tim-optimal control 4*(t) (in the case of % only

anecessary condition). In Chapters 4 and 5 we found that the

Rmiltonian is a mximum when

SGN[B'(t)f(t)]: Systems B, C, and (A.4)

{u'[B'(t)P(t) : System D }
ohere P(t) is a solution to the systems adjoint differential equations

;(t)- -A'i(t), 0(to) -a. (A.5)

Hence, for non-trivial solutions to this equation the control u*(t),

to, tf], is well defined except at a finite number of switch times.

Substitut 4ng (A.4) and the solution to (A.5) Into (A.-) gives

tfif -, (t f't 0 ) [10 + f 0 't t 0 )Bt) $j (t() dtJ] (A. 6)

to

?a
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The only terms on the right side of this equation which are not fixed

by a description of the system are and t , Thus (A.6) can be re-

written as

f -_(tf) + P(atf) =_Fatf). (A.7)

To define F we choose a A 0 in R and a tfC Ri+, then the initial

value problem defining F is given by Equations (A.2) and (A.5). For

a given system description the problem of computing an optimal

control ([t, tf*], u*(t)) which takes the system from a specified

initial state X. to a given terminal state f is equivalent to that

of determining an inverse to (A.7). In general, this inverse cannot

be determined analytically; therefore, an iterative technique

is proposed.

A.4 An Iterative Solution

In describing the optimal control problem we have taken the

maximum principle point of view and have constructed an equivalent

two-point boundary value problem. This two-point boundary value

problem defines a function F which maps the boundary conditions on

the differential equations into the state space. Hence, the solution

to the optimal control problem becomes equivalent to finding-.

A.14.1 Newton's Method

The iterative procedure is to guess both the unknown boundary

conditions on the adjoint system at t = t and the final time t f

then solve the initial value problem and find the error in the

conditions at the terminal point. At the same time, the first-order
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effects of changing the guessed values are calculated. These first-

order effects are then used to find a better guesO according to the

following recursive formula-
I-

-k 4.(. f) Fg tftk F
(Atf)kj ] A rk t [j

(A.8)

j k. rk G(, tf)k Ax (A.9)

- -k + A ,k (tf)k+ " (tf)k + ( tf)k (A.lO)

This relation with rk a I is the basic Newton procedure.

A.4.2 Modifications to the Newton Procedure

IThe iterative procedures due to Knudsen and Plant differ from

the basic Newton method in two respects. First, ifj&Xjis large the

Newton procedure may not converge. Thereford, the algorithms due to

Knudsen and Plant incorporate procedures for selecting the iterative

scale factor rk. An additional difficulty associated with the Newton

approach is one of insuring the existence of G In view of this

requirement, Plant approximates the optimal regulator problem with a

modified optimal regulator problem (the target is assumed to be a

hyperephere centered at the origin) and then establishes ccnditions

under which G is non-singular.

However, due to the fact that the eigenvalues of (2.27) and

(2.28) with zero real parts occur with multiplicity, the ccnditions
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under which Plant's iterative procedure can be applied with success

are not evident. Hence an iterative technique similar to Knudsen's,

which incorporates certain procedures proposed by Plant, was develop-

ed specifically for solving the optimal control problem considered in

this report. The basic algorithm is summarized as follows:

1. Knudsen's recursive relation, which is similar to (A.9), was
4

modified to include Control Systems (B) through (E). The co-

state vector P(t) was normalized with respect to one component

ofa ; hence, G is an 4 x 4 matrix.

2. A procedure was incorporated which prevents the computation from

"hanging up" at a switching surface.

3. Plant's method for selecting rk was employed to insure rapid

convergence.

4. Starting values for the pair (ttf) were selected as indicated

in Section 4.4.2.

A.4-.3 Derivation of the Recursive Relation for Control Systems (B)
through (E)

Following Knudsen 115] we find that for the regulator problem

a first order relation between AX and AV can be obtained from a Taylor

series expansion

A f( + 4t f + Atf) F F(a, t f)(l)

or

Af ++R, f (Al f)
- f
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where R is the remainder to the linear terms. If we neglect the

higher order terms (A.12) can be written as

!=f G, tf) a (A.13)

Reducing A Xf by an appropriate scale factor and after performing

the required inverse we obtain Equation (A.9). In general, G !.s not

square and, therefore, must be modified such that it becomes in-

vertable and yet retains it original mapping properties. Such

alterations are discussed in the following section and in References

(15) and [19).

The first order relation between the required correction in

the terminal state AXf and the corresponding change in (a, tf) is

carried out in two parts. First, the effect of varying the switch

times and the final time on the state X(tf) is expressed in terms of

a Taylor series expansion. Then changes in the switch times are

expressed in terms of a Taylor series expansion. Then changes in the

switch times are expressed in terms of incremental changes in a.

Equation (A.4) implies that the components u* (t) (for the

cases considered in this report jmax = 2) of the control vector

u* are piecewise continuous and assume extreme values over the

interval (to , t*]. If uj(t) changes sign hj times in the interval

(t0 , tf) at the times ti then Equation (A.6) can be expanded in terms

of the switching times as follows:
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(x ~f'  ( .lo "0

(x2) f (x2)0

- 0(tf, to) (A. 14)

(3)f (X3)0

(X4) f t tf

Ito~tot I t I t

t t t2  t U(t

f04 L I X
h 

h

where
4

= s Bs 1  r- 1,2,3,4, 1 1,2
r s ors Sj

In general, Equation (A.14) is not satisfied. That is, the terminal

state corresponding to "guessed" values for both a, which specifies

the switching times, and tf is not the required Xf. To determine

corrections in the switching times and the final time we form a first

ord, r variation of (A.14) in a manner siritliar to th.-.t of (A.l1 ).
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SThus,Ig

T. s t(t)t + AtfG2 tf) + (A.15)

where R is assumed small compared to the first order terms and

71)f - x)

(2)f - (X). )k

=()tt 0 )B(t) _% (t) dt (A.16)

to

A h Ih(-) - I)1i. (t1 t)..(1 ^ 2 m

h h
44 42 1 42 ; 20

lA^ h t (A.17)
S12 U (t

C2(tf) - (A.18)

h h

41'f 42'f 2 0

.ti
t1

t .

t2h
2j
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Note that due to the particular form of the boundary conditions consid-

ered in this report, (Xl)f - (X2 )f - 0, and the fact that x1(t) and

X2(t) are uncoupled from X3(t) and xY(t), the transition matrix can be

eliminated from (A.14) by operating on both sides of this equation

with 0 (tf, to).

If the control u(t) is an optimal controller then the following

condition was found to be necessary

Gs [S (t)]: Systems B, C, (

* (t) {su [SI(t)]: System D (

where

The switch times tj occur when

S (ti) = 0, i 1,2,...h j = 1,2.

Using (A.21) we can now relate small changes in the initial co-state

to variations in the switching times Ati. Expanding the switching

functions S in a Taylor series about the known switch times we find

(t1 + S (t0 a)
S ~t 1 A a+ 40) =S (ti, a) + L J--- t

(A.22)

3 S (t a) r+E i- A a + R"

r=i r

Actually, we have a total of (hI + h ) equations stmiliar to (A.2.).
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Setting

since these points must be zeros of S and S and solving the resul-
.1 2

tin$ equations for the perturbations in the switching times Sives

AdtI r _a _t ) (A.23)

atj

Here we have assumed that t is small compared to the first order terms

and that

aS (d. a)

ati

Conditions for the above Inequality are discussed in (15].

Combining (A.15) and (A.23) we can readily form the variational

equation relating Aa and Atf to X.

Al, G 1(t'c + AtfG2 (tf) (A. 25)

By scaling aX with r we obtain a recursive relation of the form of

(A.9).

A.4&.I4 Evaluating G"

In order to solve for the required incremental inverse relation

-v _ I"A x (A.26)

the (4 x 5) G matrix must be inverted. This is impossible to do

directly since G is not square. Knudsen (15) overcomes thi- difficulty
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atby augmenting G with an (a + 1) row which is independent of the

others. However, for the control problem considered in this report and,

in general, for systems to which the algorithm applies, the problem

associated with G being non-square can be solved in a number of ways

In the following paragraphs we consider the possibility of reducing G

to a (4 x 4) matrix. Such a procedure is desirable since the computer

time required for evaluating C"1 would be reduced.

In the previously described iterative procedure the maximum

principle supplies a necessary condition for time optimality. This

necessary condition implies that the projection of u(t) on P(t) must be

a maximum for all te[,, tf]. Hence, u (t) is independent of 111(t)l.

Therefore the number of independent initial co-states can be reduced to

three if P(t) is normalized with respect to one component or a combin-

ation of several components of a. This technique is illustrated in

Chapters 3, 4, and 5.

It should be noted that the normalizing element must be chosen

with caution. First, P(t) must not be normalized with an element which

would normally be zero. For example, if al = I in Chapter 4 then c G

for certain values of V and t. Second, if P(t) is normalized improper-

ly certain control sequences may be eliminated. For example, consider

the double integrator plant when the cost criterion is time. For this

problem the optimal control is given by

u*(t) = SGN [a - a 2 t]

if J i =1 then u(0) = -I, and when 2 = v e find that (a1  t) is a

monotonically decreasing function; thus, the control sequence
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U(t)m

cannot be obtained by iterating on O( alone.1

The previous examples illustrate several pitfalls which can

arise if 1(t) is normalized improperly. In order to use this proce-

dure successfully one must examine the characteristics of the switch

functions, the dynamic system, and the boundary conditions before

choosing a normalizing element.

A.1g.5 Selection of the Iterative Scale Factor

From both the theory and applications we find that the itera-

tive behavior of a Newon type algorithm is directly related to the

choice for r k. 2 The procedures for selectingr k described in the

sequel were motivated by the requirement of achieving a rapid rate of

convergence and by the characteristics of both the switching functions

for Controllers (B) through (E) and the Newton type iterative proce-

dure.

Ideally we would like to choose r k such that

IkX+11 - min Ik6X(!.+r) tV (A.27)
II6Xk+jl - an I L(k+,(rk)' tf ([rk))Jl (.

0 < r,, s9 k+

However, under certain conditions the problem of ensuring the exist-

ence of G supersedes that of achieving rapid convergence, Hence,

several schemes for selecting rk were employed.

2For autonomous systems Kundsen [15]discusses the problem of findinga rke(O,1] such that 116k+11 < 11V/'kll
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Scheme 1: This procedure was developed by Plant for the itera-

tive method described in Reference (19]. The only Justiftcations for

adopting this scheme are: (1) the algorithm employed in this report is

similiar to Plant's, (2) it appears to work, and (3) the convergence

characteristics of the two methods are similiar when this method is

employed.

Step 1: Choose r = 1 and solve the initial value problem.
k

Step 2: If 1+A l k then set r - a and proceed to

the next iterat.on. However, if 1 1+I I _XkJ then

solve the initial value problem using

r = I x +ll (A.28)

to find 1k%+

Step 3: If I *+ ll < I1X11 then proceed to the next iteration.

If 0II+1l1 > Jl1Xj1 then solve the initial value problem

using

- I --1 llk (A.29)

This scheme is ideally suited for the flooding proess since it contin-

ually tests large values for rk. Hence, when the derived and optimal

controls are "close", as is usually the case in the flooding process,

convergence is very rapid.

Scheme 2: A systematic search wherein the interval [0, 1] was

divided into q equal intervals. Each of the values 
r =q I

q q

was tested and the one which produced the minln.'t was1! -k+l
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adopted. The disadvantage of this method is that it requires (q)

solutions of the initial value problem per iteration. However, in

those cases where the guessed values for (g,tf) were not "close" to

,tf) this procedure was useful in selecting a starting value for

r,(r ). Also, this method was used to update.r in Scheme 3.

S m : The scale factor r remained constant over a speci-

fied number of iterations. Periodically, asystematic search (Scheme

2) was made around the operating point rk to select an improved value

ihich increases the rate of convergence. This procedure proved to be

successful in the following situations:

1. In cases where the iterative process using Scheme 1 to select r

"hangs-up". This can occur when the number of switching points in

(to,tf) is sensitive to changes in (g,tf) and, in addition, when

the terminal state is sensitive to the number and location of the

zeros of S J In such cases r was held constant at the "best" value

computed by Scheme 1 and updated periodically or when k

2. In cases where the'initial guess was "bad" ( u1 (t) did not'have the

same form as u (t)). To prevent the computed variations from

becoming too large hard limits were placed on ltfl. Those sit-.

uat ions which required this method of solution are discussed in

detail in Appendix B.

In certain cases it was not evident which of the above schemes

is superior in terms of minimizing the number of iterations required

for conergence (i.e., when JJx{j <e ). For example, Schemes 1 and 2

may require that the initial value problcm be solved more than once per
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iteration. In contrast when using Scheme 3 the error would normally be

reduced for each solution to the initial value problem providing rk

was selected properly. However, the improvement per iteration may not

be as great as in Schemes 1 and 2.
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APPENDIX B

SPECIAL CONSIDERATIONS IN THE COMPUTATION
OF OPTIMAL CONTROLS

This section discusses the convergence characteristics of the

iterative procedure described in Appendix A as observed during the

computation of the results presented in Chapters 4 and 5. In particuls

the major pitfalls that were encountered in applying the Knudsen type

algorithm to synthesize optimal controls for Systems (B) through (E)

are discussed. Also, the techniques employed to mitigate these diffi-

culties are summarized.

B.1 Behavior of the Iterative Procedure

During the computation of the results presented in Chapters 4 and

5 it was found that the iterative behavior of the algorithm is directly

dependent upon the following system characteristics and/or computation-

al procedures:

1. The dimension of ,.(t) end the shape of f.

2. The quantitative structure of the switching functions.

3. The desired change in the state point (j(tf) - X(t )).

4. The error between the computed (nominal) and the optimal controls.

5. The scheme for selecting r .

By iterative behavior we mean tli effect of AY, which is computed

during each iteration, on the control and hence on both the system's

trajectory and the characteristics of G. 1i those cases whcre the



199

above mentioned items interacted unfavorably the real computational

problem was one of achieving convergence with the rate of convergence

becoming of secondary importance.

Let us now examine in detail how the aforementioned items, either

alone or through interaction, influence the iterative behavior of a

Knudsen type algorithm.

First, during the flooding process as outlined in Section 4.5.1

it was found that the algorithm described in Appendix A would, at times,

fail to converge when I rI40.2 and r 410. The reason for this behav-

ior becomes evident if one examines Figures 4.30 and 4.41. Here we find

that when t is small the two terms in eanh of Equations (4.26) and

(4.2T) can become of the same order of magnitude (i.e., a1  1); there-

fore, in general, the number of switchings in (t 0 f) is reduced when

both IYI and t¥ become small. Should the total number of switchings be

reduced to the point where the third switch point is lost from the

interval (t0, tf) due to a perturbation AY then the computation must

terminate since G becomes singular. This situation characterizes the

major difficulty in applying a Newton procedure when the rank of G

depends upon the number of switching points in (to, tf).

Second, providing the initial (terminal) state point does not lie

on a switching hypersurface which contains optimal trajectories (i.e.,

h1 + h2  3) then the previously described difficulties will not occur

if (g, tf) is close enough to (9, tf). In general, this means that in

the region where Iyk 0.2 and T:yI.10 the derived and optimal steering

functions must have the same shape [15]. This condition will not be

satisfied if the "guess" for the optimal control corresponding to
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states which lie within this region is "bad" or if during the flooding

process (1f)i+l ((1o)i+l) is separated from (vf), ((1o),) by a switch-

in& hypersarface. In the latter case !i+ (t 0 i(to). In many cases

when Ij1 and/or ty were large enough it was found that the algorithm

would recover from a bad guess for (g, tf) or from an encounter with

a switching hypersurface if the derived and optimal controls were not

too different in shape.

Third, in view of the requirement for at least n-l switching

points in (to, tf) the proper selection of p becomes of increasing

importance in cases where the total number of switchings approaches

three. If rk is too large the AY computed during the kt iteration may

cause the third switch point to be lost from the interval (to, tf).

Hence, C becomes singular. Therefore, in such situations, the selection

of r was motivated by achieving convergence with rate of convergence

becoming of secondary importance. When Ir1 and/or TY were "large

enough" the usual effect of selecting too large a value for P was

either the onset of oscillations in IkII or 11.X+,11 > Ikj11.
Fourth, as is commonly the case in iterative solutions, the di-

mension of u(t) as well as the shape of n has a profound influence on

the convergence characteristics of the computatioLal procedure. In

general, it was found that the algorithm became less efficient and/or

failed to converge more often during the flooding process as the dim-

ension of u(t) decreased and when n became unsymmetrical (e.g.,r0=D).

That is, for the four control systems considered the task of computing

optimal controls for Jet Configuration (D) proved te be the most

difficult in terms of achieving convergence. This wcs particularly
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true when both ~jandT were small. In such cases the form (ordering

of the thrust and coast periods) of the derived control had to be very

close to that of the optimal control in order to guarantee convergence.

Hence, the iterative procedure would not, in general, converge, due to

the loss of the third switch point when both InI and LY were small if a

guess was made for the optimal control. However, this was not a major

problem since in the flooding process only small changes were made in

LY starting from that value for which the optimal control was known;

therefore, the derived control at each step was usually very close to

optimal.

From the previous discussion it is evident that the major draw-

back of the iterative procedure described in Appendix A is that of

requiring a minimum of three switching points in the interval (to, tf).

Therefore during the computation of the results presented in Chapters

and 5 it was necessary to modify the basic iterative procedure. Such

modifications were designed to improve the iterative behavior are pre-

sented in the following sections.

B.2 Convergence Characteristics

To illustrate typical rates of convergence achieved during the

computations discussed in Chapters 4 and 5 two examples of the relation

between missed boundary conditions defined by

and the iteration number are presented in the sequel.

Example 1

Purpose: To illustrate the nearly quadratic convergence of the
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Newton type procedure when the nominal and optimal controls have

the same form.

Plant: Equation (4.7), Y = -0.8, 4-jets, po = 0.

Boundary Conditions: Case 1, Figure 4.5; Z? - -15.

Remarks:

1. The initial error 11o0 shown in Figure B.1 is the result of a

"guess" for the pair (_, tf)

2. The computation time was approximately three seconds on a

35500 digital computer.

Examle 2

Purpose: To illustrate the iterative behavior when ies 'a

sensitive to the choice for r.

Plant: Equation (4.7), Y = -0.8, 4-jets, Po = 0.

Boundary Conditions: Case 2, Figure 4.5; Z0 = -35.
-~y

Remarks:

1. The initial error H#011 shown in Figure B.2 is again the

result of a "guess" for the pair (a, tf) 

2. u (t ) -u a(t ); however, when k = 2, r = 1, 0.17, (ux(to)) =

(Uy(t )) 2 -1; (Ux(to)) = (Uy(to)) +l. Thus, 1l-2 ! = 27.5

even though TB - TB: 0.

3. The computation time was approximately 13 seconds.

B.3 Allowable Perturbations in the Final Time

As mentioned previously, the major drawback of Knudsen's algor-

ithm is that of requizing at least n-I switching points in the interval

(to, tf). In view of this requirement it was found t1'.r the following
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conditions are conducive to G becoming singular:

1. u (t ) 0 u(t ) and (t) - t "small".

2. The shape of 4(t) being considerably different than that of u(t).

Such situations occur, for example, when a bad guess is made forg or

in certain cases during the flooding process when the (i+l)'t initial

(terminal) state point is separated from the (i) h by a switching

hypersurface. In the case when (tf)k - t is "small enough" even small0

perturbations in the pair (-k' (tf)k) cAn cause the third switch point

to be lost from the interval (t0, (tf)k). To alleviate this problem a

systematic procedure was developed for crossing switching hypersurfaces

when tf - t is small; the particular technique is discussed in the0

following section.

In many cases when the iterative procedure failed to converge

due to _Uk(t) being dissimiliar to u*(t), it was noted that large neg-

ative perturbations were computed :n the dimensionless final time.

Hence, within several iterations the interval (tf)k - t had become

small enough to allow hI + h2< 3.1 To prevent this "f-ailure mode" from

occuring a hard limit was placed on the computed perturbation Atf

according to the following rule:

Atf =1 (Atf)mx if IAtfe (6tf)m,) (B.2)

LAtf if IAtf I < CAtf) s .

where (Atf)Mx-:O.05 tf.

IThe reason for this sensitivity to changes in tf when u k(t) does not
have the same form as u*(t) becomes evid.nt if one c:nsiders a simple
problem such as time-optimal control of the double i--egrator
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The effect of limiting Atf in this manner is quite different than de-

creasing r. Reducing the iterative scale factor tends to decrease both

IRZ, Qand IAtf1. However, ILtf I will still be large compared to IkAVII;
hence, the overall effect of decreasing r is that of increasing the

number of iterations until the third switch point is lost from the
interval (t, (tf)k). The beneficial effect of placing a bound onAtf

is to allow the iterative procedure to cycle a sufficient number of

times, thus reducing the error betweenO and a. Once u(t) and k(t)

are of the same form the procedure normally converges with no further

difficulty (during the flooding process (tfi+,t (t)i if the pertur-

bation 61 is not too large; note, this is not true for System (D)).

In some cases where tf was not "large" (EY4 10) it was found

that placing a lower limit on (t)k wodld tend to prevent G from

becoming singular. This was accomplished by observing the fact that the

required change in the normalized angular momentum dictates the fine

time when the thruster "on-off" times are only a function of W. and po

(see Section 4.6.1). At this point it should be noted that only during

the application of Scheme 3 (see Appendix A) to select P were limits

placed on At V Also note that this procedure was found to be rather

ineffective during the computation of those results discussed in

Section 4.7, i.e., when u(t) = uD(t).

B.4' The Computation of Optimal Controls when the Initial (Final)
State Point is Close to a Switching Hypersurface and the Total
Number of Switching Points Equals Three

In this section we present a technique which prevents the itera-

tive procedure from "hanging up" when the (i+)&t initial (terminal)

state point in the flooding process is separated from the ()
tI by a
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switching hypersurface and, in addition, (h + h )1+3. (h2 + h =3.
1 2 ~ ~ 2 i

Such a procedure was required during the computation of the results

presented in Figures 4.7 through 4.13 and 4.30 throuih 4.33 when

(r ) I 1 and (ty)c 4 (note, the discontinuities in. are not large

and occur when (;)B 4 I and, therefore, are not shown in Figures 4.6

through 4.8 and 4.10 through 4.12).
0

As indicated in the previous section the iterative procedure

described in Appendix A experiences convergence difficulties when: (1)

the interval (to, tf) is "small", and (2) uk(t) does not have the

same form as u (t). Under such conditions the computed perturbations

(to, Atf) will eventually result in G becoming singular.
2 Such was the

situation during the computation of the results discussed in Sections

4.6.1 and 4.7.1; switching hypersurfaces were encountered when TB3

and when Tc 5. Therefore, to prevent the flooding procedure from

"hanging up" at a switching hypersurface two subroutines were incorpor-

ated in the basic program. The first allows the required transition

when the control is provided by Jet Configuration (C' and the second

when the control is a two dimcnsional vector (u(t) = !B(t), !(t)).

B.4.1 Scalar Control

In this case the state space can be divided into regions defined

by u(t.) = +1 or u(to) = -i. Hence, when (If),+, is separated from

f by a switching hypersurface we find that ui+j1to) = -u (to).

In view of this change in u(to) the following proced.,re is employed

2Limiting Atj does not, in general, provide a solution to this problem

when (ff - tO) is "small" since small changes in Cy can also cause

h + h < 3
1 2
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to comp~ute the nominal control for ( ~ ~when (u*(t), tf~ is known:

1. Monitor hy. If h <3 then set (u (to)) = (to))
2. Pick tree switching points in (to p (t*) since lKzf)i+1" ( f)il

is sm:ll, (t)i+l f(tf)i.

3. Solve the switching equations S (aj , ty). = 0, j = 1,2,3, simulta-

neously for XJ+1. This is possible since a is a normalized form of

E(to) (see Appendix C).
. Ue (U~t))+ I  s [eAt

Ii. e (t0) 1 SGN (e a i+I as the new estimate for the con-

trol and (tf)i+, - (tf)i for the final time.

The only input required by this procedure are three switching times.

In view of the algorithm's "failure mode" the following values for the

switching times were found to be satisfactory:

Thus, perturbations in ( t, f ) were not as likely to result in h < 3f y

as would be the case if (ty)i 1 were close to zero or (ty) were close

to tf. It was also found that Schemes 2 and 3 for selecting r resulted

in a more reliable iterative scheme; r>0.7 would often result in h <3,Y

B.4.2 Two Dimensional Vector Controller

In the sequel we present a technique for crossing a switching

hypersurface when the admissible control set is a square ii R2 . In

this case there are three possible choices for (Y(to))i+ . One method

for evaluating (u(to))i+ would be to systematically iterate on all

combinations of ux(to) and u o) until the correct one is found. How-

ever, in view of the conditions (final time, number of switchings per

channel, and total number of switchings) vhich existed when a switching
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hypersurface was encountered such a procedure was found to be unnec-

essary. Instead, a systematic method 'ias developed which takes advan-

tage of the apparent "smoothing" (the reduction in magnitude of the

discontinuity of the support hyperplanes at the corners) of the iso-

chrones as the dimension of the control vector increases.

Let us begin by reiterating the behavior of the control as

changes were made in t ¥ (during the flooding process ( Y)i+ = (EY)i

- 6v). For those results presented in Figures 4.6 through 4.13 the

starting value of (!.), was 40 and a switching hypersurface was not

encountered until (EY)O 1 . During this flooding ncither ux(to) nor

uy(T.) changed sign due to the introduction'of new switch points into

the beginning of the interval (t0 ,tf) or due to the loss of existing

switching points. However, switching points were lost from the right

end of the interval (toitf) as the terminal time decreased, this sit-

uation is illustrated in Figure B.3. Hence, G did not become singular

until h. =2 (h = 1),hy = 1 (hy = 2), and the computed perturbations

(Aa, At ) caused the loss of one switch point from the right end of the

interval (totf). At this point further information as to the form of

the new control was found to be essential in order to contirue with the

flooding process.

From the time-optimal solutions to simple pioblems (the harmonic

oscillator) it appears that the discontinuities in the support hyper-

planes at the corners of the minimum time isochrones tend to "smooth

out" as the dimension of the control vector increases. Thus, it was

conjectured that wlien (xf)i was separated from (x ) by a switching

hypersurface,the jump ing would not be large when u(t) =4(t), !!E(t).
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This hypothesis is found to be realistic if one compares the magnitude

of the discontinuities in , Figures 4.30 through 4.32, to typical

values for a, e.g., for y = 0.2, 0o = 0: (y)= 0.7; a = 1.03,

a2 - 0.85, a, - 3.36, a 4 = 1, TB = 1.66; (t¥)B = 0.6; aI = 1.03,

a2 = .35, a3 = 3.06, a 4 = 1, T - 1.51.

With the previous discussion in mind we can now sumarize the
e

procedure for efi:-cting Iswitching hypersurface transitions.

1. Determine'the first roots of Sx(t) = 0 and S y(t) = 0 which occur

outside the interval (to, (tf)l+); a typical result is depicted

in Figure B.3.3  Here, the additional switching points t, tY

ty.and of course the switch point that was lost, t x are shown.
Vx

x vy
A comparison between ti., tX - and tl is then made to determine

I!

the switch point closest to (to, (tf)i+); this point is denoted

by (tj)1. In all cases considered during the computation of the

results presented in Chapters 4 and 5 a root of the switching

function which did loose a zero from the right end of the interval

(to, (tf)I ) was found at t = -c « << tf . This situation is0 fi+j

illustrated in Figure B.3 where ux(t) has lost the switch point

t and u (t) is about to gain the switch point tly+ at the left
2 y l

end of (to , (tf)").

2. Based on the premise that the "Jump" in a is not large, small per-

turbations are made in a so as to achieve the following changes in

a) (t,) moves into the interval (to, (tf)'+l).

)(tf)+ is the result of the first iteration for (tf)jL 1 .
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S X( )

t
x

s (t)

Figure B,3 The Loss of a Switch Point During an Encounter Wit".
a Switching llypers'irface
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b) The switch points that were not lost remain within the inter-

val (to, (tf)lI e.g., t x and ty in Figure B.3.0 +1P 1 1

Thus the following alterations were made in the steering functions:

(1) h (h ) = 1, h (h ) = 2 changed to h (h ) = 2, h (h ) = 1, and

(2) as dictated by the location of (td)-  a sign changed occurred in

either u (to), u (tf)l+, u (to), or u (tf)l+ . This procedure was

accomplished by relating changes in 2 linearly to the desired changes

in t. A recursive relation similar to (A.9) was then employed-to
i

compute changes in a such that (th)1 moved into the interval (to,

(tf) +) and at the same time allowing no changes in the two switch

points which remained in (to, (tf)i+), e.g., t and ty.
0 i11 1

B.5 Controller Configurations (D) and (E): Additional Computational
Requirements

In view of the peculiar characteristics of both uD(t) and

(Sx'(t), Sy '(t))E, further modifications designed to improve the iter-

ative behavior were made to the basic algorithm. As in the previous

sections the motive for incorporating additional computational rules or

procedures was one of ensuring the existence of G .

B.5.1 Controller (D)

Of the four systems for which optimal controls were determined

by iterating on (q, tf) the computation of (u , tY) proved to be the
y f D

most difficult in terms of the effort required to achieve convergence.

In preliminary attempts to compute (c , tf)D  in terms of j ) where

the nominal and optimal controls did not have similar forms (the order-

ing of the thrust and coast periods were dissimilar) excessively large

perturbations were computed in C and/or tf; hence, at some point
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h < 3 and thus C became singular. In view of this "failure mode" the
y

following procedure was developed to assist in the computation of real-

istic perturbations.

The primary difficulty in achieving rapid convergence when

u(t) = uD(t) becomes evident when we examine Figures 4.44 and 4.45.

Here, we find that TD is not a continuous funqion of Z., which is in

direct contrast to the characteristics of TA, TB, TC, and T . Hence,

this situation is similar to an encounter with a switching hypersurface

(see Section 3.4) where 2 undergoes a discontinuity. However for

Control System (D) the change in control due to the loss of a switch

point from the T'41gt end of t, (t a) ) s changes are made in y0 f i+1 ty

((EN)i () . t results in uy(tf = 0. When this situation

occurs during the flooding process t£ undergoes a discontinuity since

the control must terminate with a thrust period. Therefore, to prevent

the computation of large perturbations in a and/or t the nominal-f

control for (Zf)i+l was formed by: (I) setting _ = i+1, (2)

systematically reducing (tf) by a small amount (t (t

At, J= 1, 2, 3, ... J) until uy(tf)j = 1, and (3) setting

(tf)i+l= (tf)j. This procedure gave good results End allowed rapid

solutions for (2 , tf) in terms of Ly for values of Ty from 40 down

to 0.2.

B.5.2 Controller (E)

Due to the form of (Sx'(t), Sy '(t))E it is p.,ssible to loose all

the switching points from (to, t ) during the iterrzive process when

Icaur ng Ix 1  and iI < Ia 1. To prevent tdeis Situation from

occuring U. and Cx2, were de~fined by
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a -a ± E , a a a t E
1 3 3 2 4 4

whenever the computed perturbation in - resulted in h I + h 1 < 3.
x y

The augmenting terms f and _ were chosen such that the control de-
3 4

viation from u(t) = 1 or u (t) = 1 for all tefto, t ) due to

switch points located close together resulted in the iteration cut-off

criterion on the normalized angular momentum bing cztisfied. That is,

I - IT (T E)l o.ol, 1LyI - ILy(TE)<O.OI.

Thus, the boundaries shown in Figures 5.4 through 5-4 which separate

the singular and non-singular regions were defined x.;hen ither

a - 0a E or a O . E.
3 3 2 4 4
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APPENDIX C

VERIFICATION OF TUE SWITCHING SEQUENCES DEFINED IN TABLE .i

This appendix consists of two parts. The first section verifies

that the switching logic for Controller (B), as defined in Table 4.1,

is optimal when T < T;, T' = vr. The second section demonstrates that
B

Sx(a) (Sy (a)) can have three independent zeros in an arbitrary

interval (ao, af); hence, there exists a solution for a in terms of the

three roots.

C.l Optimal Switching Logic for Controller (B) when TB < TB

In Section 4.4.1 it was assumed that the initial (terminal) state

point does not lie on a switching hypersurface which contains optimal

trajectories; therefore, h + h _?3. Moreover, as shown in C.2 therex y

emists an a such that three independent roots of either Sx(ai) = 0 or

S y(a) = o occur in an arbitrary interval (o, af). We shall now demon-

strate that the total number of switching points cannot exceed three

when TB < TB.

One way to verify this claim is to show that the function

T T - m r (C.1)

m = 0, ±1, t2. ... , has at most three zeros for aE(0, T') where

T= t a n - 1 xl sin (7ac+a 2) + sin (a+a.3)

c Cos (2'a c2 ) + cos (a + a)]

and (m) is chosen to represent n particular s.,quence of zeros, e.g.,
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m - 0,1,0, m = 0,1,2,3.

Through a geometric interpretation of the quotient Sx()/Sy (a) we

find that the magnitude of 01 has significant influence on the behavior

of T . Therefore, the cases when jalI < 1, 1all > 1, and Ic1I = 1 are

considered separately.

Case A: 1al < 1

Differentiating (C.2) with respect to a gives

2T (7 l)(CF - 1)...y_ + 11 + 1(c.3)
du 2 2(2 + 1 + 2a cos%)

where I - - l)a + a'. Note that for -1 < y < 1 both terms on the

right side bf (C.3) are always positive. Define X as the new indepen-

dent variable. Then (C.3) becomes

2
dT. yl dx. (c.1)

1 + 1 + 2alCos X

Integrating the second term from X = 0 to X = 27r we find that the

change in T is

AT= A + r . (c.5)2

Since dT/da is always positive, roots of the form ma = 0, 1, 2, 3,

are of interest. If AT< 3"T/2 then there are at most three roots of

this type. For a given interval Aa = af - a the first term on the

right side of (C.5) will be a maximum when y = 1. Therefore, AT < 37Tr/2.

Case B: lall > I

In this case the second term of (C.3) is always negative for

-1 < 7 < 1. Furthermore, setting the left side of (C.3) equal to gero
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we find that the derivative changes sign when

-Io~ [~ a2 + c6

Therefore, unlike the situation encountered in Case Awe must consider

the fact that zeros of T can occur for values of (m) other than those

defined by the sequence m a 0, I, 2, 3, .. ..To show that the total

number of zeros of S (a) and S (a) cannot exceed three it is suffi-

cient to demonstrate that four zeros of the type defined in Table C.1

cannot occur.

Case m Case m

1-a 0, 0, 0, 1 3-b 3, 2, 1, 0

1-b 1, 0, 0, 0 4-a 0, -1, -i, 0

2-a 0, 0, 1, 2 4-b 0, 1, 1, 0

2-b 2, 2, 1, 0 5-a 1, 1, 0, 0

3-a 0. 1, 2, 3 5-b 0 0, 1, 1

Table C.1

Possible Combinations by Which Four Zeros of T Can Occur

To accomplish this task we first consider a geometric interpre-

tation of Equation (C.4) as depicted in Figure C.I. By observing the

location of both the zeros of dT /da and the maximum change which

occurs in T between the zeros it is possible to demonstrate that Capes

1 through 4 cannot occur. Note that Cases 1, ?, and 4 require JATf to

be at least 7r/2 before and/or after the first or second 7cVo of dT/da
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and that Case 3 requires: (1) JT I to be at least 3r/2, and (2) T(0)

to be monotone.

From Equation (C.3) it is evident that the maximum positive

change in T occurs when y = +1 and is

bax < 7r

when &o < 1T/2. Thus, Cases 1-a, 2-a, 3-a, 4-a,b, and 5-b cannot exist.

a 2 + 1 + 2a COSx

2( - 1),. I )

-2v -7 0 )o i r V 2 7r

Figure C.1 A Geometric Interpretation of Equation (C.4)

Following the method of integration employed in Case A we find

that the maximum negative change in T is -7r when t = -2wr. Therefore,

Cases 2-b and 3-b cannot occur.

Case 1-b requires that the interval LX contains one of the points

defined by X = 2af, m = 0, ±1, t2. ..... Moreover, the negative term of

(C.4) is an even function of X (see Figure C.1). Consequently, the

maximum negative change in T when: (1) ja I < r, and (2) the interval

AX contains the point defined by X = 2mv, m = 0, ±1, ±2,..., is greater

than -7r/2. Therefore, Case 1-b cannot occur.

To show that Case 5-a cannot occur we must resort to a more

sophisticated approach then that used in the previous paragraphs. In

fact, it appears th-t T con change by -7T/D. Therefore, Equations (C. )
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and (C.6) must be examined in detail in order to determine if both the

ordering and magnitudes of the positive and negative changes in T

required for the existence of four zeros can indeed occur.

To complete the proof and show that Case 5-a cannot exist when

6a< &aI (let us assume that Ad = IT/2) the following facts are noted:

(1) IXf - %, < 7r when Aa < W/2, and (2) Xkz[x, X ] and ).f Po ]

if two zeros of d T/do are to occur when XE[, X 0 ] . Now let 02 = X

If X f - X0 = %O - X2 where X1 _ X0 and, in addition, if AT m -7r/2 for

A)= - X then it is possible for four zeros of T to occur. More-

over, the aforementioned procedure for locating the interval [%X Xf

on the X axis represents the most efficient means by which T can have

four zeros. This is due to the fact that the positive change in T ,

which occurs between X1 and Xo, is a maxim-am (%1,%-"E[%f, X.01). To find

the smallest change in X for which four zeros can occur, the function

a = 27r- ) - XI (C.7)

must be minimized subject to the constraints

g(= Pj, r r - tan- [an IX ta tan -ta tanI -2 01 -I a + 1

(C .8)
+ y [ rX Xo = o+) X ) -

2(7- 1

Ia I > 1, 171 < 1, xo 1x. xo > o (c.9)

ItJAImax :  7r and the point ). = 7T must be contained In [%f, X01. Thus, we

must solve a Lagrange multiplier problem wliere sowu of the constraints

are strict inequlitics.
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From the theory of constrained maxima or minima (see for example

Reference [22)) we find that it is necessary that the point defined by

al', X) at which A% takes on a relative maximum or minimum satisfy

the set of equations

AD._ + o (c.l)._.. + 0 _L (C.11)

AX. + 0 (c.12)

where b'I < I and Ia%1 > 1. For reasons which will become evident

presently it is desirable to select values for 7 within the allowable

range and then solve the lower dimensional multiplier problem. Thus, we

are interested in solving (C.8) in addition to

(a2 e2 i
-+X g1 + + 7 1 =0

( 1 +gl 1)2 1(a l) 2 tan 2 jX 2 -- I)
i 1(c 13)

2)

AA+ I (I -a1(7 +2)] - +
d X1 X a, c*(Y + 1)Ic~2] P.at 17(- - 1

2%yacx(lca,) + (a . l) +l 1

2 7) (a1 + 1)(1 7a,) (a 1  )( 7 a

(al~ + l(

2tan -. +(Ih

(of1 + 1)2 + (a 1 - 1)2 tan2 X.
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7( - (7 + 2)J ]Jm

2a (Y - 1 I~ 20Y (I c + U2. J
for (al , X ,).) when lal > 1. Due to the non-linearity of these equa-

tions a gradient procedure was employed to iterate for the pair (a , X

The particular method used [23] required approximately thirty seconds

on a B5500 digital computer to converge to a solution of Equations

(C.8), (C.13), and (C.14) for each value of y. The results of this

numerical approach are presented in Figure C.2. At this point it

should be noted that the graphs shown in Figure C.2 are the result of

solving the Lagrange multiplier problem when: (I) only the strict

equality, Equation (C.8), is considered, and (2) Equations (C.8),

(C.13) and (c.l) are considered (when 0 < Xo < %I).

For values of y between y Z - 0.26 and y - + 0.26 neither k°

nor a violated the constraints given by (C.9); hence, simultaneous
1

solutions were obtained for Equations (C.8), (C.13), and (C.14). When

7 became approximately + 0.26 it was evident that Xo -. X2 . Therefore,

>1the solution when y 0.26,was obtained by setting Xo = X and iterat-

ing on a.1 until (C.8) was satisfied.

Due to the fact that Xo -. 0, a simultaneous solution to

Equations (C.8), (C.13), and (C.14) could not be ound when y- -0.26.

When this occurred Xo was set equal to zero and the iterative procedure

was then employed to solve (C.8) for a ; as indicated in Figure C.2, no
1

solutions were found.

In the multiplier problem the cost mu.;t be evaltated when the

constrained variables become saturated at their allo:able limits. In
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the preceeding discussion it was noted that solutions to (C.8) were

obtained in terms of a when Xo . ). for -Y 0.26. As indicated in
1

Figure C.2 it was also possible to satisfy (C.8) when %0 = 1 for val-

ues of 7 down to 7 % -0.38. Note that the cost is slightly less when

). - X1 than it is for 0 < Xo < X. Also note that Aa appears to

approach 'r/4 as y - + 1. Hence, for those values of 7 which are of

physical interest, T cannot have four zeros when _. a < 7r/4.

* CaseC: ja I "1

If cos 1 -1 then the second term of (C.3) is identically

zero; therefore, the conclusions reached In Case A are applicable.

When % = + mir, m = 1, 3, 5,...., the second term of (C.3)

becomes, in the limit, as a -
1

lim (,-)(ll
1 1

Since this limit is not unique a singular condition exists. This be-

havior is apparent if one considers a geometric interpretation of the

following equations

19 tan-~ I X co(cr+%2) .

where

X.2 .1  2 + 1 + 2a1 cos( -C)

=sin a, +cx i+ c Isin X

= ~tan'
[cos Cz + c 1cos X.3

33
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.4

-3

xo

C1

\ 2.5

2

1.52

-1.0 -. 5 0 0.5 1.0

-1.0 -0.5 0 0.5 1.0

Figure C.'. Solution to the Multiplier Problem~
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It is readily shown that 1A T I < r when A a < r. Therefore, argu-

ments similar to those in Cases A and B can be used to show that T

cannot have four zeros when & a < 7r/4

C.2 Independent Zeros of the Switching Functions

The switching function Sx(a), (S (a)), has three independent
X y

zeros S (ai) = 0, (Sy(ai) = 0), i = 1, 2, 3. ' Thus, Sx(a), (Sy ()),

can be made to have three zeros in an arbitrary interval (aoaf).

Proof:

At the switching times ai, i = 1, 2 3, Sx (ai) = 0. Hence

Equation (4.23) becomes:

Sx(a1 ) = P cos7a + P sin7a + P cos(a1+ P )+P sin(a +p 0) = 0

SX(a2) = P1 cos7u 2 + P2osin7a2 + P 3cos(a 2 +P 0 )+P 40 sin(a 2 +P 0 ) = 0

SX(a ) = P cOsya + P sina 3 + P cos(Ca +0 )+P sin(a + = 03 1o  2 3 3o  30o 4o  30o

Final.ly for some S (a ) A 0 we havex4

S(a) P cosya + P sin, a + P cos(a+P)+P sin(a+ )Sx 4 1 0o  4 20 4 30 4 0 4 0  0

Writing the above equations in matrix form gives:

cos7a sinya cos(a +P ) sin(a +P ) P 0
1 1 1 0 1 0 1

0

cos~ ca sinyaF cos(a +0 ) sin~ a +P ) P 2 0 0( -7

cosya sina cos(a +P ) sin(a +p ) P 0
3 3 3 0 3 0 30

cosya sinyac cos(a +P ) sin(a +p ) P S (a)
4 , 4 4 0 4 0 4 X 4

The functions cosya, sinya, cos(C+P ), sin(a+P ) are linearly ii,,epon-0 0
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dent for -1 < y < 1. Hence, the coefficient matrix Is non-singular

and, therefore, its inverse exists. Thus Equation (C.17) can be solved

for P which shows that S (a) has three independent zeros (through a--0

similar procedure we can easily show that S (a) has three independent
y

zeros).
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